
Faculty 03: Mathematics/Computer Science

Bachelor’s Thesis

PyCRORM: A Relational Approach to Episodic
Memory in PyCRAM

David Prüser

Matriculation No. 606 236 6

August 13 2024

First Examiner: Prof. Michael Beetz, PhD
Second Examiner: Dr. Thomas Röfer

Advisor: Tom Schierenbeck, M.Sc.

Declaration of Authorship

I hereby confirm that the thesis I am submitting is my own original work. Any use of other
materials and works of other authors is properly acknowledged at their point of use.

Bremen, August 13 2024

David Prüser

i

Contents

Contents . i

1 Introduction 1
1.1 Motivation . 1
1.2 Roadmap . 2

2 Related Work 5
2.1 Cognitive Robot Abstract Machine . 5
2.2 Adaptive Control of Thought-Rational . 6

3 Preliminaries 7
3.1 Cognitive Architectures . 7

3.1.1 Perception . 8
3.1.2 Action selection and execution . 8
3.1.3 Reasoning and Decision-making . 8
3.1.4 Attention . 9
3.1.5 Memory . 9
3.1.6 Learning . 10

3.2 PyCRAM . 10
3.2.1 Designator . 11
3.2.2 TaskTree . 13

3.3 Databases . 13

4 Contribution 17
4.1 PyCRAM classification . 17
4.2 Functional requirements . 19
4.3 Approach . 20
4.4 ORM-Class Structure . 21
4.5 Mappings . 24
4.6 Querying in the ORM . 26

4.6.1 Views . 26

5 Evaluation 29
5.1 PyCRORM Usage Demo . 29
5.2 Learning Demo . 37
5.3 Evaluating data-intensive applications . 40

i

5.3.1 Reliability . 40
5.3.2 Scalability . 41
5.3.3 Maintainability . 42

5.3.3.1 Operability . 42
5.3.3.2 Simplicity . 43
5.3.3.3 Evolvability . 44

6 Conclusion 47
6.1 Future Work . 47

Bibliography 49

ii

Chapter 1

Introduction

1.1 Motivation

The field of artificial intelligence has been around for many decades, providing many subfields of
research. According to the definition of Russell & Norvig in their widely known book Artificial
Intelligence: A modern Approach, the question about what artificial intelligence is can be
divided into four different possible definitions:

„AI is the field of study that tries to build ..., 1. Systems that think like humans,
2. Systems that act like humans, 3. Systems that think rationally and 4. Systems
that act rationally. “ (Stuart Russell & Peter Norvig, [RN21])

Rational in this case means that the system achieves the best possible - or at least the best
expected - outcome, when acting under uncertainty.

Significant advancements have been made in developing such systems [KT20]. One subfield
of artificial intelligence, cognitive robotics, introduced the approach of cognitive architectures
(3.1) to model human cognition and behavior in an attempt to create cognitive robotic systems.
One such framework, PyCRAM (3.2, 4.1), aims to model human cognition to develop software
enabling robotic agents to achieve autonomous behavior. This framework is actively developed
and utilized in research at the Institute of Artificial Intelligence (IAI)1 at the University of
Bremen [Dec].

Modeling the human mind is not an easy task due to humans complex decision-making, learn-
ing, memory capabilities, and emotions. However, in recent research, several characteristics have
been addressed as critical components of cognitive systems (3.1). Among these characteristics,
the ability to learn from past experiences and events, improve decision-making, and choose a
certain (optimal) action sequence out of multiple possibilities is one of the most critical abilities
of a cognitive agent. Yet, the way components like learning and decision-making are modeled
differ in different architectures.

Although PyCRAM already implements many characteristics (3.1) of human cognition like
decision-making and action selection as described in Chapter 4.1, it currently has no inherent
learning capabilities. As the short- and long-term memories are the most important charac-
teristic in a human to learn a new skill and improve knowledge like language understanding,

1https://ai.uni-bremen.de/

1

https://ai.uni-bremen.de/

2 Introduction

memory is also one of the most critical components in cognitive architectures. One important
aspect of the memory necessary for learning purposes is episodic memory (3.1.5), which enables
an agent to store past experiences and recap them whenever needed [Ver22]. To properly imple-
ment learning, the architecture needs a reliable, correct and fast episodic memory component
that stores the robot’s past experiences and can properly track the robot’s environment with
its objects and their relationships. The memory needs to be easily usable and user-friendly, and
it also needs to achieve high insert- and querying-speeds, since machine learning scenarios often
deal with lots of data.

The current type of episodic memory used in PyCRAM is a NoSQL approach called Narrative
Enabled Episodic Memory (NEEM (2.1)). This tool has proven itself in various tasks and is
used by multiple frameworks, especially within the Everyday Activity Science & Engineering
Collaborative Research Center (EASE CRC)2 ecosystem [Bee+20]. However, the implementa-
tion was not specifically designed to meet the needs and requirements of PyCRAM. As a result,
it is not readily accessible or easily integrated within the architecture, and it may not effectively
capture all relevant details and relationships. The system interfaces with an external library
and utilizes a NoSQL database, which is often suboptimal for representing complex relationships
between different structures, given the availability of more suitable database options for this
purpose. Also, NoSQL has no standard querying language, making it harder to use for users
which have no experiences with this type of database [NPP13]. Querying multiple NEEMs at
once, as of right now, is not possible, which might lead to complications during training and
testing in learning in the cognitive architecture [Bas24b].

NEEMs not being easily queryable and usable in general, plus their potentially not ideal
relationship capturing make it not a perfect fit for PyCRAM’s needs and requirements,
especially in terms of learning. The episodic memory component should be optimized for
its architectures needs. PyCRAM needs a new memory component that fulfills all the
aforementioned requirements, is optimized for its architecture and can be used without further
understanding of databases, querying languages and details of the structure and internal
functioning of the memory.

This leads to multiple questions that will be answered thoroughly in this thesis. The first and
most important question: Can a suited episodic memory component be introduced to
PyCRAM, which excels in terms of usability, performance and relationship captur-
ing? The second question: Does this memory component enable learning capabilities
within PyCRAM?

1.2 Roadmap

To create a proper scientific elaboration, this thesis is divided into multiple chapters.

The first chapter, Chapter 2 introduces related work in terms of cognitive modeling and
memory systems of cognitive agents. It describes two popular cognitive architectures and their

2https://ease-crc.org/

https://ease-crc.org/

1.2 Roadmap 3

implementations of memory, which have been used in research for many years.

The next chapter, Chapter 3 gives an overview of foundations of subjects necessary to
understand this thesis and its implementation, such as cognitive architectures, PyCRAM
and databases. It is important to understand the fundamentals to further understand the
contribution and the added value of the work done.

Chapter 4 contains the core of this thesis. It begins by discussing PyCRAM as a cognitive
architecture. It explains some of the functionality of PyCRAM and compares them to typical
characteristics of cognitive architectures. This is important to understand PyCRAM’s goals
and ideas and also create awareness of the state of the framework.

Afterwards, another section recaps and further elaborates on the technical and functional
requirements of the memory defined in the introduction and the approach that can be chosen
based on these requirements and needs. Once the requirements have been worked out,
the chosen approach and type of storage are communicated, and the contribution, namely
PyCRAM ORM (PyCRORM), is explained in detail.

Once PyCRORM is defined and explained, a working example of this new memory component
is shown in Chapter 5, followed by an example of learning done with the help of PyCRORM.
This gives a good impression of the capabilities and communicates design choices connected to
the requirements defined earlier. Providing a learning scenario is great to illustrate not only
the functionality of PyCRORM, but also its influences on learning as a typical characteristic
of cognitive architectures. At the end of the chapter, an evaluation of the capabilities of
PyCRORM in comparison to NEEMs is done. This is crucial to prove, that the new memory
component actually adds value to PyCRAM over the NEEMs and second, in scientific research
in general.

The last chapter, Chapter 6 wraps up this thesis with an overview of the work done and an
idea of possible future work. It revisits the initial goals and requirements.

Chapter 2

Related Work

Research on cognitive architectures (3.1) and episodic memory systems (3.1.5) has been around
for more than 50 years and has improved a lot ever since [Tha12]. Nowadays, the total number
of cognitive architectures is expected to be in the 300s [KT20]. This chapter gives an overview
of previous research on such architectures and especially episodic memories within these archi-
tectures. There are many approaches and lots of literature to these architectures with their
implementation of memory in recent research. This chapter gives an overview of some popular
and historically relevant cognitive architectures and their approach to memory as part of their
structure.

2.1 Cognitive Robot Abstract Machine

Cognitive Robot Abstract Machine (CRAM)1 is a cognitive architecture written in common
Lisp created for designing and deploying software on autonomous, cognitive robotic agents. It
was first mentioned in a scientific article in 2010 and was developed in research to analyze
and improve task performance and execution on everyday household tasks in a typical living
environment [BMT10]. It aims to create a control system that enables a robotic agent to perform
complex everyday activity tasks in a household environment in an autonomous, independent
way. Task-performing in CRAM can be done with a plan language [BMT10].

PyCRAM, which the contribution of this thesis is implemented for is a Python reimplemen-
tation of CRAM, meaning it started of with similar goals.

Since CRAM models cognition and achieves autonomous behavior, CRAM also provides an
implementation of an episodic memory called Narrative Enabled Episodic Memories (NEEMs).
They create episodes for every task and every performed action and store it in their memory.
NEEMs consist of two parts, the NEEM experience and the NEEM narrative.

The experience stores low-level robot data like sensory information but also holds details
about robot or object poses while keeping track of the time of each experience. This is done
with the help of ontologies, which are used to describe the environment, the robot acts in.

The experience is connected to the narrative which stores information about the general
episode like goals, the task at hand and descriptions [Bee+20].

Data in NEEMs is generally stored in a NoSQL database, namely a Document-oriented
1https://cram-system.org/

5

https://cram-system.org/

6 Related Work

database with JSON documents using MongoDB2 as their Database Management System
(DBMS) (3.3). This approach leads to having high flexibility in schema definition and high
scalability, providing NEEMs with the ability to store huge amounts of data and change their
schema.

There have been attempts to migrate NEEMs into a relational database schema, see [Bas24b].

2.2 Adaptive Control of Thought-Rational

Adaptive Control of Thought-Rational (ACT-R)3 is one of the biggest currently maintained
cognitive architectures in the world. Its origins can be backtracked to 1973, when Gordon
Bower and John R. Anderson designed the Human Associative Memory (HAM) [AB14]. It has
been extended and improved ever since.

ACT-R ultimately models human cognition, like any other cognitive architecture. It is di-
vided into different core modules for different aspects of cognition-modelling, with its long-term
memory (LTM) being one of these modules.

It does not define an explicit episodic memory within its LTM, but rather stores its knowledge
in a declarative and a procedural memory component (3.1.5), with the declarative memory
including information about episodes. In general, knowledge in ACT-R is represented by chunks,
with chunks being structured pieces of information. These chunks consist of a chunk type and
different slots filled with associated values, which can be seen as columns in a table in a relational
database, containing different details about the entity. These chunks can be referenced by other
knowledge in the memory via pointers.

The declarative module is the collection of these chunks, which can be added and updated.
In order to update them they are first retrieved from the memory. Once retrieved, the slots can
be updated with new values [LGL15].

The procedural system does not consist of chunks but rather stores information about skills
and procedures. It consists of different pairs of condition-action rules, where a condition leads
to a certain action. The condition defines the chunk and its slots, that must be present in
a certain buffer to trigger the action. This definition is a reference to a chunk in declarative
memory [Gal13].

To conclude, different architectures follow different approaches to modeling human cognition
and implementing (episodic) memory. Therefore, there is no clear „right way“ to implement
memory, but one of the biggest cognitive architectures in recent research in the form of ACT-R
uses an approach similar to and related to a relational database.

2https://www.mongodb.com/
3http://act-r.psy.cmu.edu/

https://www.mongodb.com/
http://act-r.psy.cmu.edu/

Chapter 3

Preliminaries

This chapter introduces some basic concepts and definitions needed to understand the contri-
bution and grasp its functionality and its effects on the current architecture and research.

It is divided into different parts, starting with a section about the definition of cognitive ar-
chitectures and typical characteristics usually modeled and implemented in these architectures.
Understanding this topic is important to get an idea of the goals of typical robotic cognitive
modeling and to get familiar with some general key components of this thesis.

Another section introduces PyCRAM and some of its modules that will be used or extended
within the contribution of this thesis. A basic understanding of PyCRAM’s goals and function-
ality is crucial to comprehending PyCRAM’s classification in Chapter 4.1 and getting a grasp
of the entrance point of the upcoming implementation of the memory component.

The last section addresses database and SQL concepts, giving a basic overview of keywords
like NoSQL databases, relational databases, Object Relational Mappings/Mapper (ORM) or
Views. These basics are also important in order to get an understanding of the functionality of
the new memory component and the possibilities and limitations of different database types that
could be chosen as a backend of the memory. Understanding these topics is also important for
comparing and evaluating the new memory component (ORM) against the old one (NEEMs),
which is done in Chapter 5.3.

3.1 Cognitive Architectures

Based on the definition of artificial intelligence (AI) given in Chapter 1, AI can be defined as
building systems that think and act like humans (Subpoints 1. and 2.). Lots of research has
been done on building such systems, as Chapter 2 suggests. In cognitive robotics, cognitive
architectures are one approach to address this challenge.

Over the years, numerous cognitive architectures with diverse capabilities and objectives
have been designed and implemented, leading to extensive research in this area. Kotseruba and
Tsotsos, in their comprehensive review of 40 years of research in cognitive architectures, define
them as:

„a part of research in general AI, ... with the goal of creating programs that could
reason about problems across different domains, develop insights, and adapt to new
situations and reflect on themselves. Similarly, the ultimate goal of research in

7

8 Preliminaries

cognitive architectures is to model the human mind, eventually enabling us to build
human-level artificial intelligence.“ (Iuliia Kotseruba & John K. Tsotsos, [KT20])

These programs are often utilized to endow robotic agents with cognitive capabilities. In the
context of artificial intelligence, an agent is defined as an entity that acts in a specific manner
[RN21].

Some popular examples of cognitive architectures include CRAM (2.1), ACT-R (2.2),
CLARION and Soar1.

The term „cognitive architecture“ is somewhat loosely defined, lacking specific criteria for
classification. Nevertheless, given that the ultimate objective involves modeling the human cog-
nition and behavior, it is possible to identify common characteristics of human cognition that
many architectures incorporate to create cognitive agents [Ver22]. As previously mentioned,
research goals and focuses in research vary, leading to different requirements for cognitive ar-
chitectures and their design. Consequently, some architectures possess features that others do
not, and vice versa [KT20][LLR09].

Some of these characteristics include:

3.1.1 Perception

Perception is a critical property when developing a fully cognitive agent. It is essential for en-
abling the agent to communicate and interact with its environment. Similar to human senses,
the agent requires mechanisms to receive external inputs and appropriately store this informa-
tion to respond to changes in a dynamic world. Common perceptual modalities include vision,
sound, and smell [KT20]. Data acquired by sensory modules of an agent are typically saved to
the agent’s sensory memory and, depending on the current task, moved to the working memory.

3.1.2 Action selection and execution

Another capability of an agent is action selection and execution. Often, the agent is not only
designed to model human cognition but also to utilize this cognition to interact with its environ-
ment. Typically, acting in an environment involves executing a sequence of actions. However,
the agent must be aware of its own skill set, the motor capabilities of its actuators, and the in-
formation obtained through its sensors to adapt based on the outcomes of these actions. Thus,
to execute action sequences effectively, the agent requires close interaction with its memory
[RSS12] to obtain and use this capability. Sensory information is stored within the working
memory by perceptors, while the agent’s capabilities are recorded in procedural memory.

3.1.3 Reasoning and Decision-making

Reasoning involves the process of drawing conclusions and making inferences based on current
knowledge. It encompasses the establishment and application of logic, rules, and heuristics
within the environment and for the agent. To effectively model human cognition, there must
be a structured representation of the world and the relationships between objects, enabling the

1https://soar.eecs.umich.edu/

https://soar.eecs.umich.edu/

3.1 Cognitive Architectures 9

agent to comprehend its environment and engage in reasoned activity. In cognitive robotics,
this capability is pivotal for establishing a belief state and enabling the agent to react and adapt
to a dynamic environment [Oli+19]. Unlike humans, robotic agents lack inherent understanding
of their environment. One method to formally describe domains of interest, such as the envi-
ronments in which agents exist and act, is through the use of ontologies [Küm24]. Reasoning
can be categorized into various types, including analogical reasoning, deductive reasoning, and
moral reasoning [LSB14].

Reasoning serves as the foundational framework for decision-making. The beliefs and experi-
ences of a cognitive agent guide its decisions by evaluating potential outcomes and identifying
appropriate actions. Strong decision-making abilities are essential for effectively modeling cog-
nitive processes.

3.1.4 Attention

Attention refers to the agent’s ability to assess its environment and prioritize specific sensory
data over others. When combined with reasoning, attention can influence changes in action
selection and execution. Ideally, the agent autonomously determines which inputs to ignore
and which require its focus [BK11]. Depending on the task and goals, evaluating the same
environment may yield different outcomes, as certain external factors may need to influence the
agent’s next actions in one sequence but may be irrelevant in another.

3.1.5 Memory

A fundamental characteristic of a cognitive agent is its knowledge, particularly the representa-
tion of that knowledge. To effectively act and react in a partially known and dynamic environ-
ment, an agent must be capable of accessing and storing information about the environment
itself, which it typically receives through its sensors, as well as information about its own set
of actions and the limitations of its actuators. Additionally, the agent must store information
about past experiences and learned behaviors. Cognitive architectures, which aim to replicate
human-like processes and structures, incorporate memory components based on principles sim-
ilar to those of human memory. Typically, this involves the design of both short-term memory
and long-term memory systems. However, because memory systems can be tailored to specific
requirements, the design of memory components within cognitive architecture can vary. The
complete structure of a typical memory system is illustrated in Figure 3.1.5.

Short-term memory is often divided into sensory memory and working memory. Sen-
sory memory stores recent information acquired by low-level sensors. Working memory is anal-
ogous to a personal computer’s random access memory (RAM), storing information pertinent
to the current task, such as goals, knowledge about objects, possible actions, and environmental
details [Ver22]. It also receives data relevant to the current task from the sensory memory.

Long-term memory is generally used to store an agent’s previous experiences in solving
various tasks in the form of episodes, as well as to hold knowledge about objects in the environ-
ment, goals, and other relevant information. Long-term memory often distinguishes between
procedural and declarative memory.

Procedural memory stores information about motor tasks and action sequences, as well as

10 Preliminaries

Figure 3.1 Typical Partitioning of Memory

learned behavior. It serves as the repository for the ”how” in an agent’s functioning [Su+16].
Declarative memory, on the other hand, can be divided into two subcategories and pertains

to the ”what” [Su+16]. Semantic memory functions similarly to procedural memory but
focuses on information about the environment and the task at hand, rather than the capabilities
of the agent’s actuators. These two types of memory share a significant relationship. [Leó16].
Episodic memory stores past experiences and events, such as poses before and after executing
actions, often recorded with a timestamp indicating when the change or event occurred. This
provides comprehensive access to earlier episodes.

3.1.6 Learning

Learning entails leveraging prior experiences to enhance performance over time or adapt to
ambiguous environments [TH12]. As discussed in Chapter 3.1, a prevalent objective in cognitive
architectures is the development of intelligent systems. The capacity to assimilate experiences
and external influences constitutes a fundamental attribute of human cognition. Therefore,
any attempt to emulate human cognitive structures must include modeling the phenomenon of
learning.

Typically, knowledge is not inherently embedded within the architecture itself but is acquired
and retained through the execution of various experiments. Thus, memory plays a pivotal role
in facilitating the learning process. Similar to the categorization of memory types, learning
in cognitive robotics can be delineated into several categories: perceptual learning, procedural
learning, declarative learning, associative learning, non-associative learning, and priming [KT20]

3.2 PyCRAM

As mentioned in the Introduction, PyCRAM2 is a framework for designing and deploying soft-
ware on robotic architectures to achieve high levels of robot autonomy and control [Dec]. It is a
Python re-implementation of CRAM (Cognitive Robot Abstract Machine) written in common

2https://github.com/cram2/pycram

https://github.com/cram2/pycram

3.2 PyCRAM 11

Lisp. It uses ROS3 (Robot Operating System), which comes along with certain functionality
like sensor data processing.

One of the framework’s primary features is the so-called ”plan language”, which gives the
end-user a way to implement and execute robot plans on different robots. These plans can be
designed without much knowledge about PyCRAM’s architectural structure and the implemen-
tation of different components. They can be executed on different robots like the PR2 or the
IAIs Boxy.

PyCRAM also presents the possibility of simulating these plans within the project. With
the BulletWorld being a physics-based simulation environment, the user can do realistic and
fast robotic simulations [Dec19], meaning the user does not need to explicitly test a plan on
the robot itself. The BulletWorld is designed around PyBullet4, a library for real-time physics
simulation.

PyCRAM defines multiple modules typical for cognitive architectures and can therefore be
seen and used like such architectures, as described in Chapter 4.1.

3.2.1 Designator

As described above, PyCRAM can be used to create plans that run on different kinds of robotic
architectures. These plans consist of one or more designators, a construct already used in
CRAM, and then further extended in PyCRAM [BMT10]. An example of a typical plan within
PyCRAM’s kitchen environment where the robot moves to a counter, picks up a bottle of milk,
and places it back on the counter can be seen in Figure 3.2.

Designators are a straightforward approach to represent different aspects of the experiment’s
environment and to execute certain tasks the architecture is supposed to perform. Using
Pythons object-oriented programming approach, every designator is represented by an associ-
ated class. Plans usually consist of several instances of these classes.
Designators are a key aspect of this thesis since they represent the base of the contribution as
described in Chapter 4.
These designator can be divided into four different types: action designator, motion designator,
object designator and location designator.

• Action Designator
Action designators describe different actions a robot is able to perform.
These actions come with a perform() function which executes one or more motions
connected to the action.
They take a list of arguments, which specify details about this instance of an action,
depending on the action itself. Table 3.1 shows all the actions currently implemented in
PyCRAM.

• Motion Designator
Motion designators are the motions that are performed by the robot, triggered by the

3https://ros.org/
4https://pybullet.org/wordpress/

https://ros.org/
https://pybullet.org/wordpress/

12 Preliminaries

Action Designator Motion Designator
CloseAction ClosingMotion
DetectAction DetectingMotion
GraspingAction LookingMotion
GripAction MoveArmJointsMotion
LookAtAction MoveGripperMotion
MoveTorsoAction MoveJointsMotion
NavigateAction MoveMotion
OpenAction MoveTCPMotion
ParkArmsAction OpeningMotion
PickUpAction WorldStateDetectingMotion
PlaceAction
ReleaseAction
SetGripperAction
TransportAction

Table 3.1 All action and motion designator in PyCRAM

action.
In previous versions of PyCRAM motions were intended to be called by themselves
within plans, but nowadays motions are rather used internally. One reason is failure
handling. PyCRAM provides failure handling for actions by default but does not provide
failure handling for motions.
See Table 3.1 to see all motions implemented in PyCRAM.

• Object Designator
Object designators are used to describe objects that exist in the environment. They are
often needed by action designators in order to execute certain actions like picking up or
transporting an object. An example is the milk bottle, which is used in the Pick and
Place plan above.

• Location Designator
In contrast to all other designators, location designators can be seen as helper classes.
They give information about locations in different contexts. Examples are the CostmapLo-
cation, which uses cost maps in order to create locations with certain constraints, and the
AccessingLocation, which states different poses from which a drawer could be opened.
While this type of designator is very important for the functionality of PyCRAM, it is not
as important for the goal of this bachelor thesis. It is used to get information about the
poses of objects or the robot in order to be able to use certain actions that need to specify
poses, but these types of designators are nothing supposed to be stored in the episodic
memory.

3.3 Databases 13

from pycram.process_module import simulated_robot
from pycram.worlds.bullet_world import BulletWorld
from pycram.world_concepts.world_object import Object
from pycram.datastructures.enums import ObjectType, WorldMode, Arms
from pycram.object_descriptors.urdf import ObjectDescription
from pycram.designators.action_designator import *

extension = ObjectDescription.get_file_extension()
world = BulletWorld(mode=WorldMode.GUI)
milk = Object("milk", ObjectType.MILK, "milk.stl", pose=Pose([1.3,�

↪1, 0.9], [0, 0, 0, 1]))
robot = Object(robot_description.name, ObjectType.ROBOT,

robot_description.name + extension)
kitchen = Object("kitchen", ObjectType.ENVIRONMENT, "kitchen" +�

↪extension)
object_description = ObjectDesignatorDescription(["milk"])

with simulated_robot:
ParkArmsActionPerformable(Arms.BOTH).perform()
NavigateActionPerformable(Pose([0.6, 0.4, 0], [0, 0, 0, 1])).

↪perform()
MoveTorsoActionPerformable(0.3).perform()
PickUpActionPerformable(object_description.resolve(), "left",�

↪"front").perform()
PlaceActionPerformable(object_description.resolve(), "left",�

↪Pose([1.3, 1, 0.9], [0, 0, 0, 1])).perform()

Figure 3.2 Pick and Place plan in PyCRAM

3.2.2 TaskTree

Internally, PyCRAM uses a tree-like structure to represent and manage tasks triggered by plans.
This TaskTree consists of nodes (TaskTreeNodes) which are instantiated whenever an action or
motion designator’s perform() function is called, meaning that every node represents one action
or motion. Regarding cognitive architectures, implementing some kind of action-execution-
sequence-tracking is quite common. In practice, the TaskTree belonging to the pick and place
plan example shown in Figure 3.2 can be seen in Figure 3.3.

3.3 Databases

An essential topic across various domains, including artificial intelligence, cognitive modeling,
and beyond, is the storage, retrieval, and management of data. From large corporations re-
quiring efficient systems to store customer and employee information to cognitive architectures
aiming to model human memory, and web applications handling vast amounts of data, needs are
diverse. Related data is typically stored in a unified format at a centralized location, with the
format determined by the specific requirements of the task or the nature of the data. This orga-
nized collection of related data, maintained in a consistent format, is referred to as a database

14 Preliminaries

from pycram.tasktree import task_tree

pycram.orm.base.ProcessMetaData().description = "Pick and Place�
↪plan in PyCRAM"

task_tree = task_tree
print(anytree.RenderTree(task_tree))

NoOperation
├── NavigateActionPerformable
│ └── MoveMotion
├── MoveTorsoActionPerformable
├── PickUpActionPerformable
│ ├── MoveTCPMotion
│ ├── MoveGripperMotion
│ ├── MoveTCPMotion
│ ├── MoveGripperMotion
│ └── MoveTCPMotion
└── PlaceActionPerformable

├── MoveTCPMotion
├── MoveGripperMotion
└── MoveTCPMotion

Figure 3.3 TaskTree of a Pick and Place plan in PyCRAM

[CB05]. Over the years, numerous design approaches have emerged, each tailored to meet par-
ticular needs and requirements. Among these, two of the most widely recognized approaches
are relational databases and NoSQL databases.

NoSQL (Not Only SQL) databases are a schema-less approach allowing flexible data
modeling. NoSQL databases are typically used when working with high amounts of data in
which relationship modeling is not the focus and high flexibility and scalability are desired
[SK11]. An example of a NoSQL database is MongoDB5 which uses json-like files for data
storage.

In contrast, a relational database is a rather fixed approach to storing and managing data.
It consists of a structured set of tables with varying amounts of columns in each table. Once
defined, this structure can not be modified easily. Connections and relationships between tables
can be defined by keys. A primary key describes a minimal amount of columns that uniquely
identify every row in the table. A foreign key holds a reference to the primary key of a different
table, defining a relationship between them. These relationships are one of the strongest selling
points of relational databases.

Relational Database Management Systems (RDBMS) are used to work and interact
with the database, e.g. to define its structure, store, update and retrieve data. RDBMS come
with transaction management, meaning that they implement some way to deal with multiple
parallel accesses to the database to ensure data safety and consistency [PPJ17]. Analogous,
Database Management Systems (DBMS) sometimes exist for non-relational databases.

5https://www.mongodb.com/

https://www.mongodb.com/

3.3 Databases 15

Reliability, data safety, and correctness of a relational database are ensured by the ACID
properties. ACID stands for Atomicity (if one part of the transaction fails, everything fails),
Consistency (after every transaction, the database is in a valid state), Isolation (different con-
current transactions are isolated and do not affect one another) and Durability (once a trans-
action made permanent changes to the database, the changes are kept even in case of errors)
[Jat+12]. All major RDBMS follow the ACID properties. Data retrieval is done with a query
language, in the case of relational databases via the Structured Query Language SQL. Examples
of popular RDBMS include MySQL6, PostgreSQL7, SQLite8 and MariaDB9.

One of the biggest strengths in relational databases is relationship modeling. When working
with cognitive architectures, many objects or designators in the robot’s environment need to
define relationships to each other. These environments are often described by programming
languages with the usage of object-oriented programming (OOP). Therefore, interactions
between the programming language’s objects in memory and data in the database can
be done via so-called Object Relational Mappings (ORM). An ORM is an interface
sitting between an application and a (relational) database. It can be used whenever the
application follows an object-oriented programming style, meaning that it contains classes
that are instanced. It usually works in a way, where it maps classes (objects) within the
application to a corresponding table in the database. This can be achieved by defining
a mapper-class structure in the existing code, where a mapper class containing the table
structure is assigned to a class in the OOP structure. This is done for every class that is
supposed to be connected to the database. Afterward, whenever an instance of a class is
created or updated, the mapping class synchronously changes data in the database. The
mapping classes resort to an Object Relational Mapper’s internal structure for database interac-
tion handling. One framework that enables developers to create such mappers is SQLAlchemy10.

SQLAlchemy is a Python toolkit for SQL functionality within the language. It helps the
user with database creation and management and enables developers to focus their work on
Python. When keeping database interaction separate from the application, multiple languages
and syntaxes need to be known and used, which can be limiting and exhausting. SQLAlchemy
consists of two components, the Core and ORM. SQLAlchemys documentation describes the
Core as

„... a fully featured SQL abstraction toolkit, providing a smooth layer of abstraction
over a wide variety of DBAPI implementations and behaviors, as well as a SQL
Expression Language which allows expression of the SQL language via generative
Python expressions.“ (SQLAlchemy authors and contributors, [ACb])

The ORM is an optional extension that is based on the core and provides mapping functionality
as described above [ACb].

A fundamental functionality of relational databases is the ability to query the data stored
6https://www.mysql.com/
7https://www.postgresql.org/
8https://www.sqlite.org/index.html
9https://mariadb.org/

10https://www.sqlalchemy.org/

https://www.mysql.com/
https://www.postgresql.org/
https://www.sqlite.org/index.html
https://mariadb.org/
https://www.sqlalchemy.org/

16 Preliminaries

within them. However, queries can become quite large and repetitive, especially when they are
used for similar purposes or involve advanced operations. To address this issue and improve
efficiency, the concept of views was introduced. Views are essentially virtual tables that are
not part of the database’s permanent schema but function as independent entities that can be
queried and updated [CP84].

A view often consists of a join of multiple columns from different tables, as required by
the query itself. Unlike temporary query results, views persist beyond the initial querying
environment. This allows them to be queried like a standard table, with the added benefit of
being automatically updated whenever the original columns in their respective tables change.
As a result, using views can significantly enhance performance when executing complex queries
multiple times. The ”virtual table” is defined once within the session, allowing it to be queried
directly without needing to recreate the same joins for repeated queries.

Chapter 4

Contribution

This chapter starts by discussing PyCRAM’s goals and functionality in the context of the goals
and characteristics of typical cognitive architectures, classifying it as such. Since the previous
chapter introduced both PyCRAM and cognitive architectures, classifying PyCRAM is a logical
step. The classification also provides further details about PyCRAM’s modules which might
help to understand later parts of the chapter, introducing the new memory component. It also
justifies the necessity of a functioning memory component in this architecture.

After classifying PyCRAM as a cognitive architecture, the chapter then provides a section
about the technical and functional requirements of the contribution. It makes sense to keep in
mind the ultimate goals and requirements when creating a new episodic memory. It is followed
by the approach chosen, based on the functional requirements.

Afterward, PyCRORM, the implemented memory is introduced and explained. The im-
plementation is divided into different subchapters. The first one explains the structure of
PyCRORM and the inheritance pattern of all mapper classes. Once done, another section in-
troduces how mappings are done in practice. Once the structure and the process of mappings
are defined, another section addresses the usage of the implementation (PyCRORM), including
a practical example. Querying in PyCRORM is crucial and thus explained in detail in another
subsection.

The code written for this thesis can be found either in the main repository of PyCRAM1 or
in a fork2 of PyCRAM on Github3. Within PyCRAM, most of the code can be found in the
orm module and the designator module.

4.1 PyCRAM classification

Chapter 3.1 introduced different common characteristics of cognitive architectures used to
classify a system as such. These characteristics include perception, action selection and
execution, attention, reasoning and decision-making, memory and learning. But depending
on the goals of the architecture, other properties can be defined and some may be ignored.
Characteristics are adapted to the requirements of the architecture, leading to different
architectures implementing different properties.

1https://github.com/cram2/pycram
2https://github.com/davidprueser/pycram/tree/dev
3https://github.com/

17

https://github.com/cram2/pycram
https://github.com/davidprueser/pycram/tree/dev
https://github.com/cram2/pycram
https://github.com/davidprueser/pycram/tree/dev
https://github.com/

18 Contribution

PyCRAM, as defined in Chapter 3.2, is a framework for creating and deploying software on
robots. Some of its goals include achieving high levels of robot autonomy and research cognitive
agents.

It uses ROS internally. ROS serves as an interface for communication between hardware and
software, in the case of PyCRAM, it enables the framework to communicate with the sensors
and other components and processes within its structure, giving it the ability to send commands
to its actuators and perceive information through its sensors among other capabilities. Actual
perception capabilities are achieved by an external module called RoboKudo4, which is a per-
ception framework for robot manipulation tasks. It is also developed and maintained by the
IAI. This framework integrates ROS and can therefore work with its data.

Furthermore, PyCRAM defines a TFBroadcaster(TransForm Broadcaster), which is keeps
track of the world state and the objects inside with details like the poses of each object with
timestamps. The Transform Broadcaster generally extends a ROS package TF and creates so
called coordinate frames for every aspect of the environment like the base frame, gripper frame
or head frame [FMM]. These frames change (transform) whenever the corresponding component
within the environment changes. The broadcaster transmits these changes to other components
of the architecture [Foo13]. The PyCRAM TFBroadcaster exchanges messages with the ROS
TF module using a publisher. This kind of environmental management is crucial in multiple
regards. First of all, it enables action selection and execution, since it provides a way to
keep track of changes that can then be accessed by future actions. This is important because in
practical action planning and selection, the robot needs to know all the details about the world
to execute an action, e.g. the current pose of the agent or a pose of an object. This information
enables the agent to decide whether or not an action can be executed. Second, it also provides
some form of semantic memory as defined in 3.1.5, since this way it can store details about
the general environment like a global structure.
Another characteristic that PyCRAM comes along with is reasoning. Reasoning is a critical
characteristic when creating autonomous behavior is the goal. It was one of the earliest features
in PyCRAM. For robotic agents, it is crucial to have a form of reasoning implemented to decide
if some sequence of actions or motions is possible to execute. Robots do not have reasoning
capabilities by default like humans do and do not have any emotions or preferences when
confronted with a task. Every decision made relies solely on its reasoning capabilities and
the developer’s instructions. Among others, some of the most important reasoning capabilities
of agents in PyCRAM are the reachability of an object by the agent’s grippers, visibility of
an object, or an object being blocked by another object when the agent tries to pick it up.
PyCRAM implements some further reasoning capabilities [Dec19].

Like it implements a semantic memory, it also provides a module for episodic memory,
the NEEMs. As mentioned in Chapter 1 they were not created for PyCRAM itself and are
therefore imported as an external module, with an interface to create communication between
PyCRAM and NEEMs.

4https://robokudo.ai.uni-bremen.de/index.html

https://robokudo.ai.uni-bremen.de/index.html

4.2 Functional requirements 19

Chapter 3.1 defined goals that systems called cognitive architectures often follow and also
described common characteristics of such architectures. Based on these goals and characteris-
tics, PyCRAM can be classified as a cognitive architecture. It tries to achieve high levels of
autonomy on robotic agents, meaning to equip them with the best cognitive abilities possible
and it also implements many typical components of these architectures.

However, learning is something that most cognitive architectures do implement to equip the
robotic agent with even better cognition and it is certainly something that is currently missing
as a feature in PyCRAM. As described in Chapter 1, to implement learning, an architecture
needs some implementation of episodic memory that is best suited for this use case. NEEMs are
not an ideal fit for PyCRAM’s use case which is learning, as Chapter 4.3 describes. Therefore,
the following section defines functional requirements for an episodic memory component in
PyCRAM, especially in the context of learning.

4.2 Functional requirements

Multiple goals and requirements for the implementation can be defined.
1. Designator Mapping and Tracking:

• The episodic memory system shall maintain comprehensive mapping and tracking of
all utilized designators within the environment, including action designators, motion
designators, and object designators. This mapping must reflect the dynamic state of
the environment and support real-time updates.

2. Incremental Memory Updates:
• Any modification or execution of designators must trigger internal, incremental up-

dates to the episodic memory, preserving the history of previous states and changes.
This ensures a chronological and historical perspective of the system’s operations,
enabling analysis of past episodes and analysis of decision-making.

3. User-Friendliness and Accessibility:
• The system must provide an intuitive and accessible interface for end-users, eliminat-

ing the necessity for specialized knowledge of database structures or query languages
such as SQL. It should prioritize ease of access and user interaction.

4. Object Relationship Mapping:
• The episodic memory system shall capture and represent relationships between ob-

jects within the environment, enabling a relational understanding of interactions
and dependencies. This relational mapping is crucial for the cognitive architecture’s
reasoning and decision-making processes.

5. Scalable Data Storage:
• The system must offer scalable data storage solutions capable of accommodating an

indefinite number of plans and designators. The architecture should provide efficient
handling of extensive datasets without compromising performance or responsiveness.

6. Efficient Data Querying for Machine Learning Purposes:
• The episodic memory must support efficient querying mechanisms to provide fast

access to stored data, particularly for machine learning applications requiring sub-

20 Contribution

stantial amounts of data for training and testing. While the robotic agent’s access
to its long-term memory does not need to be instantaneous, the architecture must
support timely retrieval.

7. Consistency and Integrity Assurance:
• Mechanisms shall be implemented to ensure data consistency and integrity, pre-

venting corruption or inconsistency during concurrent accesses or updates. This is
essential for maintaining the reliability of the episodic memory system.

4.3 Approach

Chapter 4.1 explained that PyCRAM currently uses the external module NEEMs as its episodic
memory. This tool, however, is not perfectly suited for the task of learning and PyCRAM’s
needs in general based on the requirements defined above. It uses a NoSQL database, which is
not ideal for modeling relationships between objects in an environment. Since it is an external
tool, it is not specifically designed to model all different designators used in PyCRAM and be
used for learning purposes. It does not map any of PyCRAM’s designator but rather has its own
internal types, which are based on the designators defined in CRAM. PyCRAM’s designators are
based on the ones in CRAM, so due to their similarity, NEEMS did not have any problems with
PyCRAM’s structure yet. This might change and lead to complications once PyCRAM’s internal
functioning differs too much from CRAM’s. Querying NEEMs can also be quite challenging
since NoSQL has no standard querying language. They use MongoDB, which has its own
querying language, but it is not easy to use, as can be seen in Chapter 5.3. A user would need
further information and details about querying syntax and NEEMs internal database structure.
New NEEMs can also only be created by developers of the NEEM project.

Thus, PyCRAM needs a newly developed episodic memory that is directly designed for the
task that is learning.
Based on the requirements defined above, a storage system that can store huge amounts of data
with fast insert and query speeds that, while doing so, also maps relationships between different
structures and objects and also ensures data integrity and safety, is needed.

One possible way to achieve that is by using a relational database. As described in 3.3, rela-
tional databases excel in relationship design. They can be used to define relationships between
different tables in the form of foreign keys. They are easily accessible and queryable through
the widely popular language SQL. Relational databases are often managed by RDBMS, which
ensure data integrity and safety and transaction handling by following the ACID properties.
However, even when using a relational database, the memory still needs a structure in which it
can capture the world and monitor changes of any designator.

PyCRAM uses an object-oriented approach in its plan language and environment, meaning
that every designator in the environment, i.e. actions and objects, is just an instance of a
corresponding Python class. Therefore, to monitor all the designators in the current world
state, an attempt to map every Python class representing a certain designator to a table in the
database, seems fitting. This can be done by Object-Relational Mappings (ORM). SQLAlchemy
can be used for help with mappings since it provides lots of database and mapping support.
As described in Chapter 3.3 about ORMs, a common approach of these mappings is to define

4.4 ORM-Class Structure 21

a mapper class for each class that is to be mapped and then, whenever an instance is created,
invoke the mapper to create a corresponding database table entry of that type. SQLAlchemy
comes with two different mapping styles for object-relational mappings the user can choose
between, imperative mappings and declarative mappings. While an imperative mapping keeps
the class definition and the table definition separate, a declarative mapping combines these
features, meaning that with a declarative mapping, the user would define a class that serves as
the table and within the class, class attributes, that serve as the columns of the table. This
approach is very fitting for PyCRAM since there doesn’t need to be any differentiation between
classes and tables when trying to map classes one-to-one.

4.4 ORM-Class Structure

The memory module is structured into different parts that work closely with the concept of
inheritance within Python. An overview of the structure and the relationships between tables
can be seen in Figure 4.1.

Figure 4.1 ORM class structure including relationships

A Base class lays the foundation for every mapper class. It inherits from SQLAlchemy’s
DeclarativeMapping class which defines the mapping style. It is an abstract class, meaning
it does not represent a table itself, but rather sets attributes or other properties, that other
classes inherit from and pick up. The Base class creates an id column and other settings, e.g.
having the name of the class be the name of the corresponding table, which all other classes in
PyCRORM inherit from. The id is a unique identifier for every entry in a table, enabling it to
serve as the primary key in every table. It increments automatically for every entry in a table.

A class ProcessMetaData creates descriptive metadata about the PyCRAM plan at hand,
storing at what time the table was created, and by whom it was created, and stores a description
of the plan and the current PyCRAM version. The Base defines a relationship to the metadata.

22 Contribution

A relationship in PyCRORM is a function that indicates that a table belongs to or depends on
another one. It is usually defined by two attributes, one attribute holding the relationship itself
and one attribute holding the id of the related object.

The Base having a relationship to the ProcessMetaData indicates that every class that inherits
from the Base, inherits the relationship to the ProcessMetaData. Since every class inherits from
the Base as explained above, every table is connected to a corresponding metadata. This
makes sense and is desired behavior since the metadata holds descriptive information about the
plan, and therefore about all the designators and entries in the plan. Metadata is unique for
an experiment, possibly leading to thousands of rows in different tables pointing to the same
metadata object. It is important for episodic memory since queries might be related to a certain
plan or the time of execution matters, both of which are defined in the metadata. In the end,
episodic memory consists of episodes, with episodes often being each plan.

With the Base and ProcessMetaData defined, actual one-on-one mapper classes can be de-
fined. Mapped should be all designators, but also a couple of other classes.

First of all, a class RobotState tracks the current state of the robot at all times, including
real-time changes. The class is a necessity for all action designators. The (robotic) agent is
expected to execute actions, but these actions need information about the current state of the
agent, including the robot’s pose, its torso height, and the type of robot. These traits are
defined as attributes, which define the columns to be created.

Another class Pose, which consists of a Position and Orientation also needs to be mapped,
due to many properties in the world needing information about their own pose or the pose of
other elements. To name a few, like mentioned in the previous paragraph, the RobotState, which
needs the robot’s pose, objects, that need their own pose, or some actions, e.g. an action that
moves an object to a different position. It needs the RobotState, but also the pose the object is
supposed to be moved to.

A class TaskTreeNode maps every TaskTree node in the plan. It stores the action executed,
the start time and end time of the node, a status, a reason, and the parent. It is critical since
it gives more context to the executive plan and its actions and motions, and also keeps track
of the status of each node, meaning that it holds details about the success of an action or
motion. The TaskTreeNode is one of the tables that influence the functionality the most within
PyCRORM. The reason for that is discussed in Chapter 4.5.

A key aspect of the implementation is the mapping of object, motion, and action designator.
Designator represents a base class for every designator, storing the designator type.
A class Object maps objects within the world, e.g. a milk bottle. ObjectPart and BelieveOb-
ject are two abstractions of the Object.
Motion serves as a base class for all motions. It inherits from Designator and is inherited
by each motion. It holds every executed motion’s type. Every derived motion has its own
class/table and creates different attributes/columns, based on the motions requirement. Table
4.1 presents a list of every mapped motion designator as of July 2024.
Action serves as a base class for all actions. Like the Motion class, it inherits from Designator,
stores information about every executed action’s type and lots of derived actions are defined.
However, as mentioned above, it also stores a relationship object to the RobotState to keep

4.4 ORM-Class Structure 23

track of the robot’s current state. All the actions have their own tables, holding information
dependent on the action. For example, the mapper class for the MoveTorsoAction, which is
used to change the height of the robot’s torso can be seen in Figure 4.2.

class MoveTorsoAction(Action):
"""ORM Class of pycram.designators.action_designator.

↪MoveTorsoAction."""

id: Mapped[int] = mapped_column(ForeignKey(f'{Action.
↪__tablename__}.id'), primary_key=True, init=False)

position: Mapped[Optional[float]] = mapped_column(default=None)

Figure 4.2 Mapper-Class for the MoveTorsoAction

Table 4.1 presents a list of defined mappings for the action designators.
To conclude this section it can be said, that inheritance and the general structure of classes

in PyCRORM is crucial for the mapping to avoid explicitly defining every setting and column,
that all the tables share, like the id. It also leads to the possibility of defining a new mapper
class without much difficulty, providing advanced flexibility. Using the designator classes
directly for the mappings without defining explicit mapper classes for every designator is not
an option since then, a user would need to think about the structure of the designator’s table
structure in the databases during creation. This is not ideal because the user should be able
to use PyCRAM without having to think about the memory in the background.

mapped actions mapped motions
CloseAction AccessingMotion
DetectAction ClosingMotion
GraspingAction DetectingMotion
GripAction LookingMotion
LookAtAction MoveGripperMotion
MoveTorsoAction MoveMotion
NavigateAction MoveTCPMotion
OpenAction OpeningMotion
ParkArmsAction WorldStateDetectingMotion
PickUpAction
PlaceAction
ReleaseAction
SetGripperAction
TransportAction

Table 4.1 List of all mapped action and motion designator

24 Contribution

4.5 Mappings

Chapter 4.4 describes the general structure of the relational database and the mapper classes.
However, just creating classes with attributes that are then translated into tables with columns
by SQLAlchemy does not lead to actual data being automatically retrieved and inserted into
the database. Actual mappings of the designator’s properties with the corresponding inserts
must still be defined.

To create the mappings, it is crucial to understand how SQLAlchemy works. Whenever
SQLAlchemy and its modules are suppossed to be used in regards to a database, an engine
object needs to be created which receives the URL of the database as its parameters [ACa].
A Session is used to communicate between the code and the database. It binds itself to
the engine and needs to be opened and closed manually whenever communication with the
database is desired, in the case of PyCRAM whenever a plan is executed that should use the
memory [ACc]. This makes it possible to create and execute plans that do not use the memory
in the background. That can bring performance improvements and may be desired for tests
and simulations. The session can part an instance of an object into five different states. In the
transient state, the objects instance is not currently in the session, meaning it is not saved to
the database. With an add() function, the instance can be moved to the pending state. This
means, that it was added to the session, but is not yet flushed or committed to the database.
With a flush() or commit(), the in-memory pending state of the objects can be flushed or
committed to the actual database, moving them to the persistent state. Flushing is a subset of
committing. When committing, instances get flushed to the database, making them persistent,
and afterward these changes get finalized and made permanent. Just flushing does not make
the changes to the database permanent. The last two states are the deleted and detached
states, which are not relevant to this thesis [ACd].

This means, that to create the actual mappings, every instance needs to be added to the
session and committed to the database. Two additional functions are added to each class that
is supposed to be mapped by a corresponding mapper class to manage that functionality, one
named to_sql() and the other insert(). to_sql() returns the mapper class that belongs to the
specified class. For instance, the CloseAction’s to_sql would return the CloseAction of the
ORM. The insert() first calls the to_sql and creates an object of the ORM class. This class
defines certain attributes, that represent the columns of the table. These attributes get mapped
one by one. As described in Chapter 4.4, mapper classes define relationships to other tables
whenever a column also references another object. The relationship is defined by two attributes,
an attribute that holds the relationship and the object a relationship is supposed to be defined
on. This attribute, however, does not create an actual column in the table. It is rather used
internally to work on the relationship object, e.g. in joins while querying. The other attribute
actually exists in the table and holds the id of the object’s entry in its own table, defining a
foreign key. So when the attribute of the ORM class represents a foreign key to another mapped
class, an instance of that object is created and its own insert() is called on that instance, a pose
for example. So once the instance of the other mapped class is created and inserted, it can
be assigned as the value of the attribute holding the actual object. This leads to the second

4.5 Mappings 25

attribute, which is the foreign key holding the id of the referenced entry, automatically being
filled with the object’s id in the relationship attribute.

Once the attributes of the object are mapped, the object can be added to the session to move
it to the pending state.

To insert the whole plan into the database, PyCRAM uses its TaskTree (3.2.2). The ORM
uses this TaskTree structure to do the final mappings which lead to database tables being
created or extended by a designator. The TaskTree iterates recursively through all actions.
That makes it possible to define an insert() function for the TaskTreeNodes class, which for
each node invokes the node’s insert() as well. This means, that in PyCRAM, designators are
not automatically mapped whenever an instance is created or a plan is executed, but rather
whenever the root node’s insert() is triggered.

Once all actions with their poses, necessary objects, motions, and other attributes are
inserted and added to the session, hence being in the pending state, they can be committed
and therefore made permanently available in the database, meaning they are moved to the
persistent state of the session, which makes them queryable.

To conclude this section, in order to create a designator or other object, there needs to be
a mapper class in the PyCRORM module in PyCRAM and a to_sql() and insert() that maps
that designator or object.

Still, usability is one of the highest valued goals towards the implementation of the memory
component. For structures, that have similar definitions, like the action designators, which all
save the robot state, and often store poses or objects, it is exhausting and time and space-
consuming to map every designator by hand. Thus, PyCRORM defines an ActionAbstract,
which when inherited from, automatically maps all the attributes of a newly defined action,
given that they are not mapped manually and a corresponding mapped class is defined. This
means, that it is only necessary for the action to inherit from the ActionAbstract to do the
mappings. The mapping of the MoveTorsoAction can be seen in Figure 4.3.

The only thing that changed from the original designator was the addition of the inheritance
of the ActionAbstract and the addition of the orm_class attribute. The rest is done by the
abstract mapping. This is great for usability and maintainability since a user creating a new
designator does not need to know anything about PyCRORM itself, but just inherits from the
abstract mapper and defines one attribute that references the corresponding mapper class.

With the overall mapper class structure and the actual mappings being defined, PyCRORM
can be used. The mapper-classes and mappings for corresponding classes being explained above
lead to designators of plans written in PyCRAM’s plan language being iteratively inserted
as episodes into the memory, once the root of the corresponding TaskTree is inserted. The
memory tracks all the objects and designator according to the functionality described above,
also capturing changes throughout the plan, e.g. an object that gets moved by the agent multiple
times. For an example of the use of the mappings, see Chapter 5.

26 Contribution

@dataclass
class MoveTorsoActionPerformable(ActionAbstract):

"""
Move the torso of the robot up and down.
"""

position: float
"""
Target position of the torso joint
"""
orm_class: Type[ActionAbstract] = field(init=False,�

↪default=ORMMoveTorsoAction)

@with_tree
def perform(self) -> None:

MoveJointsMotion([robot_description.torso_joint], [self.
↪position]).perform()

Figure 4.3 Mapping for the MoveTorsoAction

4.6 Querying in the ORM

As explained in Chapter 1 and 4, one of the biggest goals of PyCRAM and therefore one of the
biggest requirements for PyCRORM is to be able to do learning within the cognitive architec-
ture that PyCRAM is. One capability, especially for machine learning purposes, is querying.
Querying in relational databases is usually done via SQL statements, that define the subject
of the query, which are then executed. However, that requires knowledge about the syntax
of the querying language and the overall structure of PyCRORM, making querying not very
user-friendly and usable, which was one of the requirements defined in 4.2. Therefore, through
the functionality provided by SQLAlchemy, PyCRORM can be queried right in Python without
the use of SQL directly. The query written with Python functions is internally translated to a
query the database can understand and execute.

Querying can be split into two parts, the first being a select statement, and the second being
the execution of that statement. The select statement defines the desired output from the
database. It is a function that takes the columns to be queried as its paramaters, with the
ability to output the whole table. Other details like joins, group by or the amount of rows
to be taken from the database can be added as an extra function at the end of the statement.
Executing the statement can be done by calling execute() or scalars() on the session, and adding
the statement as a parameter.

This way of defining and executing queries is simple and straightforward.

4.6.1 Views

Some, often complex and long parts of queries are repeatedly used when working with Py-
CRORM, especially in the context of learning. These queries can be put into Views in Py-
CRORM, which are virtual tables created at the beginning of the session along with the meta-

4.6 Querying in the ORM 27

data, which can be queried like any normal table, leading to simplification of the use of certain
statements with complex constraints and often resulting in faster querying times, since the con-
straints like joins do not have to be computed at querying time but are already computed when
the metadata is created. PyCRORM offers the creation of an arbitrary number of Views to
provide great accessibility and usability.

Chapter 5

Evaluation

With the overall structure of the mapper classes and mappings defined in Chapter 4, this
chapter evaluates the new memory component and compares it to the old one. It starts with
some simple examples of the usage of PyCRORM. It follows up with a more complex demo that
shows learning mechanisms in practice, using PyCRORM. It then evaluates PyCRORM in the
context of the functional requirements defined in Chapter 4.2 and in contrast to the NEEMs.

5.1 PyCRORM Usage Demo

This demo mediates a broad idea about the possibilities and capabilities of PyCRORM includ-
ing the setup of a session and connection to the database, insertions of mapped classes, and
retrieval of the inserted data. At the end of the demo, the creation of a new designator and the
requirements to make it eligible for PyCRORM are shown.

The first thing to be done is the creation of an engine and a session, to be able to commu-
nicate with the database. In this demo, an SQLite in-memory database was chosen, but the
choice is up to the user entirely. Afterward establishing a connection, the database structure
and metadata are created.

[1]: import sqlalchemy.orm
from pycram.orm.base import Base
import pycram.orm.action_designator

engine = sqlalchemy.create_engine("sqlite+pysqlite:///:memory:",�
↪echo=False)

session = sqlalchemy.orm.Session(bind=engine)
Base.metadata.create_all(engine)
session.commit()

session

[1]: <sqlalchemy.orm.session.Session at 0x7f2319f1a8b0>

29

30 Evaluation

With the session being up and running, and the structure created, a sample plan using
PyCRAMs plan language can be created. First, the world is defined, then, a TaskTree is
constructed, holding the sequence of actions executed.

[2]: from pycram.designators.action_designator import *
from pycram.designators.location_designator import *
from pycram.process_module import simulated_robot
from pycram.datastructures.enums import Arms, ObjectType
from pycram.tasktree import with_tree
from pycram.worlds.bullet_world import Object, BulletWorld
from pycram.designators.object_designator import *
from pycram.datastructures.pose import Pose
import anytree

world = BulletWorld()
pr2 = Object("pr2", ObjectType.ROBOT, "pr2.urdf")
kitchen = Object("kitchen", ObjectType.ENVIRONMENT, "kitchen.urdf")
milk = Object("milk", ObjectType.MILK, "milk.stl", pose=Pose([1.3,�

↪1, 0.9]))

cereal = Object("cereal", ObjectType.BREAKFAST_CEREAL,�
↪"breakfast_cereal.stl", pose=Pose([1.3, 0.7, 0.95]))

milk_desig = ObjectDesignatorDescription(names=["milk"])
cereal_desig = ObjectDesignatorDescription(names=["cereal"])
robot_desig = ObjectDesignatorDescription(names=["pr2"]).resolve()
kitchen_desig = ObjectDesignatorDescription(names=["kitchen"])

@with_tree
def plan():

with simulated_robot:
ParkArmsActionPerformable(Arms.BOTH).perform()
MoveTorsoAction([0.3]).resolve().perform()
pickup_pose = CostmapLocation(target=cereal_desig.

↪resolve(), reachable_for=robot_desig).resolve()

pickup_arm = pickup_pose.reachable_arms[0]
NavigateAction(target_locations=[pickup_pose.pose]).

↪resolve().perform()

PickUpAction(object_designator_description=cereal_desig,�
↪arms=[pickup_arm], grasps=["front"]).resolve().perform()

ParkArmsAction([Arms.BOTH]).resolve().perform()

5.1 PyCRORM Usage Demo 31

place_island =�
↪SemanticCostmapLocation("kitchen_island_surface", kitchen_desig.
↪resolve(),

cereal_desig.
↪resolve()).resolve()

place_stand = CostmapLocation(place_island.pose,�
↪reachable_for=robot_desig, reachable_arm=pickup_arm).resolve()

NavigateAction(target_locations=[place_stand.pose]).
↪resolve().perform()

PlaceAction(cereal_desig, target_locations=[place_island.
↪pose], arms=[pickup_arm]).resolve().perform()

ParkArmsActionPerformable(Arms.BOTH).perform()

plan()

set description of what we are doing
pycram.orm.base.ProcessMetaData().description = "Tutorial for�

↪getting familiar with the ORM."

task_tree = pycram.tasktree.task_tree
print(anytree.RenderTree(task_tree))

[INFO] [1719315347.448089]: Ontology [http://www.ease-crc.org/ont/
↪SOMA-

HOME.owl#]'s name: SOMA-HOME has been loaded
[INFO] [1719315347.449039]: - main namespace: SOMA-HOME
[INFO] [1719315347.449760]: - loaded ontologies:
[INFO] [1719315347.450509]: http://www.ease-crc.org/ont/SOMA-HOME.

↪owl#

[INFO] [1719315347.451221]: http://www.ease-crc.org/ont/DUL.owl#
[INFO] [1719315347.451760]: http://www.ease-crc.org/ont/SOMA.owl#
[INFO] [1719315348.457787]: Waiting for IK service:
/pr2_left_arm_kinematics/get_ik
NoOperation
└── NoOperation

├── ParkArmsActionPerformable
├── MoveTorsoActionPerformable
├── NavigateActionPerformable
│ └── MoveMotion

32 Evaluation

├── PickUpActionPerformable
│ ├── MoveTCPMotion
│ ├── MoveGripperMotion
│ ├── MoveTCPMotion
│ ├── MoveGripperMotion
│ └── MoveTCPMotion
├── ParkArmsActionPerformable
├── NavigateActionPerformable
│ └── MoveMotion
├── PlaceActionPerformable
│ ├── MoveTCPMotion
│ ├── MoveGripperMotion
│ └── MoveTCPMotion
└── ParkArmsActionPerformable

To insert the data into the database, the TaskTree needs to be iteratively inserted, starting
at its root.

[3]: task_tree.root.insert(session)

Inserting TaskTree into database: 100%|██████████| 20/20 [00:00<00:
↪00,

246.74it/s]

[3]: TaskTreeNode(id=1, action_id=None, action=None,
start_time=datetime.datetime(2024, 6, 25, 13, 35, 44, 64330),�

↪end_time=None,

status=<TaskStatus.RUNNING: 1>, reason=None, parent_id=None,�
↪parent=None,

process_metadata_id=1)

It can be observed, that the insertion into the database happened instantaneous. 20 nodes
were inserted with a speed of 246.74 iteration per second.

With the data inserted into the database, queries can be computed, requesting any kind of
data from the database. Querying in PyCRORM is quite easy and especially, provides a good
user-experience, due to the ability to write queries with Python functions, which are easy to
understand and work like a user would expect them to work. A query that graps the aboves
plan’s metadata looks like this:

[4]: from sqlalchemy import select

5.1 PyCRORM Usage Demo 33

print(*session.scalars(select(pycram.orm.base.ProcessMetaData)).
↪all())

ProcessMetaData(id=1, created_at=datetime.datetime(2024, 6, 25, 11,�
↪35, 55),

created_by='dprueser', description='Tutorial for getting familiar�
↪with the

ORM.', pycram_version='fab4c2d0b234032f4a94c5e8c6a1a33ee775c2dc')

It is to be remembered, that querying can be done by either calling .scalars() or .execute()
based on the desired return type of the data. Another query that graps all NavigateActions
executed would look like this:

[5]: navigations = session.scalars(select(pycram.orm.action_designator.
↪NavigateAction)).all()

print(*navigations, sep="\n")

NavigateAction(id=3, process_metadata_id=1, dtype='NavigateAction',
robot_state_id=3, robot_state=RobotState(id=3, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=3,�

↪process_metadata_id=1),

pose_to_init=False, pose_id=4)
NavigateAction(id=12, process_metadata_id=1, dtype='NavigateAction',
robot_state_id=6, robot_state=RobotState(id=6, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=12,
process_metadata_id=1), pose_to_init=False, pose_id=13)

This example demonstrates relationship modeling in PyCRORM. The output shows two
NavigateActions. Both of them have a parameter robot_state. This robot state, however, is
no actual column in the database, as described in Chapter 4.5, but an internal attribute that
holds the referenced RobotState object. The foreign key referencing this object is stored in the
robot_state_id parameter, which is an actual column in the database. Having the ability to
see the actually referenced object within the query result leads to great possibilities in multiple
regards, like checking data integrity, easy use of the database, and better accessibility.

Due to the inheritance mapped in the ORM package, all executed actions can also be
obtained with just one query.

[6]: actions = session.scalars(select(pycram.orm.action_designator.
↪Action)).all()

print(*actions, sep="\n")

34 Evaluation

ParkArmsAction(id=1, process_metadata_id=1, dtype='ParkArmsAction',
robot_state_id=1, robot_state=RobotState(id=1, pose_to_init=False,
torso_height=0.0, type=<ObjectType.ROBOT: 8>, pose_id=1,�

↪process_metadata_id=1),

arm=<Arms.BOTH: 3>)
MoveTorsoAction(id=2, process_metadata_id=1,�

↪dtype='MoveTorsoAction',

robot_state_id=2, robot_state=RobotState(id=2, pose_to_init=False,
torso_height=0.0, type=<ObjectType.ROBOT: 8>, pose_id=2,�

↪process_metadata_id=1),

position=0.3)
NavigateAction(id=3, process_metadata_id=1, dtype='NavigateAction',
robot_state_id=3, robot_state=RobotState(id=3, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=3,�

↪process_metadata_id=1),

pose_to_init=False, pose_id=4)
PickUpAction(id=5, process_metadata_id=1, dtype='PickUpAction',
robot_state_id=4, robot_state=RobotState(id=4, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=6,�

↪process_metadata_id=1),

object_to_init=False, arm='left', grasp='front', object_id=1)
ParkArmsAction(id=11, process_metadata_id=1, dtype='ParkArmsAction',
robot_state_id=5, robot_state=RobotState(id=5, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=11,
process_metadata_id=1), arm=<Arms.BOTH: 3>)
NavigateAction(id=12, process_metadata_id=1, dtype='NavigateAction',
robot_state_id=6, robot_state=RobotState(id=6, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=12,
process_metadata_id=1), pose_to_init=False, pose_id=13)
PlaceAction(id=14, process_metadata_id=1, dtype='PlaceAction',�

↪robot_state_id=7,

robot_state=RobotState(id=7, pose_to_init=False, torso_height=0.3,
type=<ObjectType.ROBOT: 8>, pose_id=15, process_metadata_id=1),
object_to_init=False, pose_to_init=False, arm='left', pose_id=17,�

↪object_id=2)

ParkArmsAction(id=18, process_metadata_id=1, dtype='ParkArmsAction',
robot_state_id=8, robot_state=RobotState(id=8, pose_to_init=False,
torso_height=0.3, type=<ObjectType.ROBOT: 8>, pose_id=20,
process_metadata_id=1), arm=<Arms.BOTH: 3>)

Of course all relational algebra operators, such as filtering and joining also work in ORM
queries. An example would be to query all the poses of objects, that were picked up by a

5.1 PyCRORM Usage Demo 35

robot. Since a relationship between the PickUpAction table and the Object table and between
the Object table and the Pose table in PyCRORM class schema is defined, a join can be used
between these tables connected by relationship objects.

[7]: object_actions = (session.scalars(select(pycram.orm.base.Pose)
.join(pycram.orm.action_designator.PickUpAction.

↪object)

.join(pycram.orm.object_designator.Object.pose))

.all())
print(*object_actions, sep="\n")

Pose(id=7, orientation_to_init=False, position_to_init=False,
time=datetime.datetime(2024, 6, 25, 11, 35, 54, 249805),�

↪frame='map',

position_id=7, orientation_id=7, process_metadata_id=1)

It can be observed, that the joins were not done in a typical sql kind of way. The relationship
objects defined in PyCRORM ’s classes were used to join directly on the objects hold in these
attributes, written like PickUpAction.object or Object.pose. This works because SQLAlchemy
enables PyCRORM to automatically create the joins, so it is only necessary to join on the
attributes that hold the relationship. This is a huge advantage over writing sql queries by hand,
since join conditions do not have to be configured manually.

Now that inserting and querying data is shown to work as expected and desired, a last
section shows the creation of a new designator in PyCRORM package. This is also done with
ease. To create a new action designator, a mapping for the class and an ORM mapper-class
are needed. A new action, that logs what a robot is saying could look like this:

[8]: from sqlalchemy.orm import Mapped, mapped_column, Session
from pycram.orm.action_designator import Action
from dataclasses import dataclass

define ORM class from pattern in every pycram.orm class
class ORMSaying(Action):

id: Mapped[int] = mapped_column(sqlalchemy.
↪ForeignKey(f'{Action.__tablename__}.id'), primary_key=True,�
↪init=False)

since we do not want to add any custom specifications to our�
↪column, we don't even need to define mapped_column, sqlalchemy�
↪does this internally.

36 Evaluation

text: Mapped[str]

define brand new action designator

@dataclass
class SayingActionPerformable(ActionAbstract):

text: str
orm_class = ORMSaying

@with_tree
def perform(self) -> None:

print(self.text)

The ORM mapper-class contains the columns needed for the table. The actual designator
inherits from the ActionAbstract and thus receives automatic mappings, leading to not having
to create mappings manually.

Since this class got created after all the other classes got inserted into the database it has to
be inserted manually.

[9]: ORMSaying.metadata.create_all(bind=engine)

Now, a SayingAction can be created and inserted. Since the BulletWorld is no longer needed,
it can be closed.

[10]: # create a saying action and insert it
SayingActionPerformable("Patchie, Patchie; Where is my Patchie?").

↪perform()

pycram.tasktree.task_tree.root.insert(session)
session.commit()

world.exit()

Patchie, Patchie; Where is my Patchie?

Inserting TaskTree into database: 100%|██████████| 21/21 [00:00<00:
↪00,

1102.80it/s]

5.2 Learning Demo 37

One thing to note is that committing the object to the session fills its primary key. Hence,
there is no worries about assigning unique IDs manually. Finally, the data quality and
correctness can be checked in the database.

[11]: session.scalars(select(ORMSaying)).all()

[11]: [ORMSaying(id=37, process_metadata_id=1, dtype='ORMSaying',�
↪robot_state_id=17,

robot_state=RobotState(id=17, pose_to_init=False, torso_height=0.3,
type=<ObjectType.ROBOT: 8>, pose_id=41, process_metadata_id=1),�

↪text='Patchie,

Patchie; Where is my Patchie?')]

This example showed some capabilities of PyCRORM, including the setup, the execution of a
plan, the subsequent querying and the creation of a new designator. All these things were done
with ease without the need to have much knowledge about databases in general. When looking
at the functional requirements defined in Chapter 4.2 it can be observed that this demo alone
shows how well goals 1. through 4. are fullfilled. It provided a great insight into the usage and
acceled at relationship capturing, accessibility and user-experience. This

5.2 Learning Demo

However, one of the research questions defined in Chapter 1 of this thesis was „Does this
memory component enable learning capabilities within PyCRAM?“. This question has not
been discussed at all. Now that the memory component has been implemented and functions
according to the specified requirements, such as relationship capturing, we can explore its po-
tential for developing learning capabilities. Consequently, a demonstration is presented below,
where an agent tries to move and pick up an object in its environment. This demonstration is
a segment of a more comprehensive example available in the PyCRAM documentation1. The
demonstration, along with the internal learning mechanisms in PyCRAM, was developed by
Tom Schierenbeck of the IAI using PyCRORM for data storage and retrieval.

PC specifications:
• CPU: 11th Gen Intel Core i7-11700 @ 2.50GHz x 16
• GPU: AMD Radeon RX 6700XT
• Memory: 32GB (2x16) DDR 4 @ 3200MT/s

The initial step involves constructing the world, the robot, the object to be picked up (in
this case, a bottle of milk), and initiating an ORM session. It is important to note that the
constructed world consists solely of the robot and the object, and does not represent a complex

1https://pycram.readthedocs.io/en/latest/notebooks/improving_actions.html

https://pycram.readthedocs.io/en/latest/notebooks/improving_actions.html

38 Evaluation

environment such as the kitchen environment used in the previous demonstration.
Following this, a probabilistic model can be established to describe the processes involved

in moving toward and picking up objects. The default policy employed in this model, which
attempts to pick up an object while maintaining an optimal distance, is illustrated in Figure
5.1. Testing this default policy on a dataset of 50,000 samples resulted in a modest success
rate of 15.8%.

[1]: pycram.orm.base.ProcessMetaData().description = "Experimenting�
↪with Pick Up Actions"

model.sample_amount = 50000

with simulated_robot:
model.batch_rollout()

task_tree.insert(session)
session.commit()

[INFO] [1723034017.823800]: Waiting for IK service:
/pr2_right_arm_kinematics/get_ik
100%|██████████| 50000/50000 [1:20:41<00:00, 10.33it/s, Success
Probability=0.158]
Inserting TaskTree into database: 100%|██████████| 488043/488043�

↪[06:19<00:00,

1285.39it/s]

Figure 5.1 Marginal View of Relative x and y Position of the Robot with respect to the Object

This also resembles a great example of data-intensive inserting into PyCRORM. The TaskTree,
executing 50,000 pick-up tasks using the default policy took 80 minutes and 41 seconds to finish
up all 50,000 nodes, achieving 10.33 iterations per second. Inserting the TaskTree into the
database took 06 minutes and 19 seconds for 488,043 nodes, with 1,285.39 iterations per second.
So even though inserting all the data took around 6.5 minutes, it is nothing compared to the
general speeds of the plans. It can be observed, that performance-wise in terms of inserting
speeds, PyCRORM uses its potential and does not take up much additional time.

The outcome of the default policy is stored as episodes in PyCRORM. Under the hood, it

5.2 Learning Demo 39

uses a View to store all essential columns combined into one virtual table, since data from
multiple different tables was needed. All successful samples can be queried by ensuring that
view.status == TaskStatus.SUCCEEDED holds, with view.status being the TaskTree table’s
status column. If the node succeeds, the robot in this sample is in a position to pick up the object.

[2]: samples = pd.read_sql(model.query_for_database(), engine)
samples

[2]: arm grasp relative_x relative_y
0 right left -0.428668 0.434859
1 left left -0.522978 0.300486
2 left left -0.215690 0.664172
3 left right -0.260081 -0.522400
4 right right -0.373218 -0.606202
… … … … …
7881 right left -0.171496 0.767967
7882 left front 0.075736 0.355137
7883 right left 0.037081 0.736527
7884 right front 0.111385 0.615652
7885 right front 0.190658 0.596994

[7886 rows x 4 columns]

To improve the success rate of the model, a better policy is needed. Therefore, a new policy
needs to be learned. Using existing data in PyCRORM, a new model that can be used as a
new policy can be learned with the JPT (Joint Probability Trees) learning algorithm. Since the
focus of this thesis is not on how learning algorithms work, this will not be explained further.

Assigning the new policy to the model and then trying this policy leads to a new success
rate of 92.8%, a huge increase over the default policy, providing great results.

[3]: model.policy = learned_model
model.sample_amount = 50000

with simulated_robot:
model.batch_rollout()

100%|██████████| 50000/50000 [2:31:44<00:00, 5.49it/s, Success
Probability=0.928]

This demo has shown a practical example of a simple learning mechanism utilizing PyCRORM
to achieve the agent’s goals. The agent improved its success rate by a lot, without explicitly
getting told where the object or the robot stands. It used the ORM, to learn from previous

40 Evaluation

episodes to improve success rate. This provides a great answer to the second research ques-
tion defined in Chapter 1. PyCRORM can consequently be used to achieve learning tasks in
PyCRAM, providing a great new possibility in research on cognitive architectures.

5.3 Evaluating data-intensive applications

Throughout this thesis, NEEMs have been identified to be the predecessors of PyCRORM in
terms of episodic memory within PyCRAM. As the new memory component is intended to
replace NEEMs in PyCRAM, it is essential to compare the functionality and characteristics of
PyCRORM with NEEMs to ensure that transitioning to this new episodic memory is justified.
Both PyCRORM and NEEMs are examples of data-intensive applications, which inherently
possess specific requirements and characteristics. Based on the widely accepted definitions
provided in Martin Kleppmann’s text, „Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems“[Kle17] data-intensive applications can
be analyzed and evaluated based on three primary features: Reliability, Scalability, and Main-
tainability.

5.3.1 Reliability

Reliability describes data integrity and safety, particularly in the event of human errors,
software glitches, or hardware malfunctions. Reliability does not imply that every operation
consistently yields valid, usable results. Instead, it emphasizes that when faults occur or the
system is incorrectly used, robust error handling intervenes to bring the system to a secure
state [Kle17]. The greater goal is to provide a system capable of storing and processing valid
data.

When evaluating the reliablity of PyCRORM and NEEMs within PyCRAM, it must be
differentiated between the reliability of the database, and the reliability of the mapper or, in
the case of NEEMs, the interface within PyCRAM, and its associated backend.

Both the mapper and the interface are designed to utilize PyCRAM ’s plan language and
store its outputs in their respective databases. Consequently, in the event of execution faults,
the plan language error handling commences, making this a PyCRAM issue. However, data
in the NEEMs database is not exclusive to PyCRAM. Many NEEMs are created within the
CRAM framework and do not hold any data from PyCRAM, making it hard to ensure data
integrity when querying the database. Currently, there is no mechanism to query or filter
PyCRAM -specific NEEMs exclusively.

Additionally, differences between PyCRORM and NEEMs are evident when examining the
data received from plans. PyCRORM follows a straightforward structure based on inheritance,
allowing developers familiar with PyCRAM ’s plan language to grasp its functionality easily.
This design simplifies the verification of correct behavior, as the functionality must be defined
only once. PyCRORM relies on the SQLAlchemy library, which integrates its own security and

5.3 Evaluating data-intensive applications 41

safety measures. These measures include verifying that the data inserted into the database are
equal to the data types specified in the mapper and ensuring the validity of joins. Currently,
PyCRORM utilizes MariaDB as its relational database management system (RDBMS), leading
to ACID compliance (3.3) and therefore maintaining data integrity, safety, and reliability.

Furthermore, a crucial component of both memory systems is relationship capturing.
Relational databases, with their primary and foreign key features, are ideally suited to ensure
accurate relationship patterns. NEEMs lack this capability due to their chosen approach.
Studies indicate that, despite excelling in other areas, NoSQL databases struggle with proper
relationship capturing, making PyCRORM the superior choice in this critical aspect [KP17].

In conclusion, since PyCRORM was designed directly for PyCRAM, ensuring reliability is a
feasible task. Since it is a mapper, it can use PyCRAM ’s, SQLAlchemy’s, and the RDBMS’s
safety and reliability features, making it highly reliable overall. The database is only filled with
PyCRAM plans.

NEEMs on the other hand, were not designed for PyCRAM originally and the codebase within
the backend is much larger, containing lots of data of other applications, which are not easily
separable. While DBMS bring the same database standard to both memories, The ORM ’s
relationship-capturing mechanisms outweigh the NEEM ’s. Its larger internal size and it’s usage
in different applications make it also harder to ensure the NEEM ’s reliability.

5.3.2 Scalability

When developing a data-intensive application, it is crucial to provide optimal performance in
terms of insertion speeds, query speeds, and scalability in general [Kle17].

Therefore, comparing NEEMs and PyCRORM in terms of performance and scalability is
important. Evaluating and comparing both memories is best done by using the same data in
each respective memory. However, NEEMs can only be created by developers of the NEEM
project. Thus, executing a PyCRAM plan that gets stored both as a NEEM and as an entry
in PyCRORM can not be done without much more effort.

However, it is possible to look at the general types of databases behind both memories and
do a qualitative comparison of NEEMs and PyCRORM based on these types. NEEMs use a
NoSQL approach featuring a document-oriented database with MongoDB. PyCRORM uses a
relational database.

As outlined in Chapter 3.3, NoSQL databases are often favored over relational databases
when flexibility and scalability in structure are primary requirements, and relationship
modeling is less critical. The reason for that is the internal structure of the database and
the ability to modify it. With exponential amounts of data being processed by the database,
NoSQL databases shine in being able to scale out (horizontal scaling), which means they can
scale by adding more machines or nodes to a system to handle the increased load. Relational
databases traditionally were limited to only scale up (vertical scaling), which means that in
order to handle increased loads of data, relational databases could only improve performance

42 Evaluation

by adding more resources to the system, e.g. more RAM, or better CPU. This was an expensive
and often impractical approach [MAI14]. Nowadays, modern RDBMS provide features to also
achieve horizontal scaling in relational databases [Kle17].

When looking at performance, none of the types can be characterized as the faster approach.
Depending on the goals, one might be chosen over the other. Studies like [LM13] have found,
that between different NoSQL databases, some were more performant than a relational database
in terms of reading, writing, and deleting data, while others were less performant. In the case
of NEEMs, a comparison between NEEMs and an SQL equivalent of the NEEMs concluded,
that when querying all gripping actions executed in a NEEM, the ORM query was faster than
the Mongo query and a general SQL query faster than the ORM query [Bas24a].
Queries that have proven more performant for NEEMs over PyCRORM were queries on specific
episodes. NEEMs with their structured documents store all information related to an episode
in the same place, i.e. having a great data locality, as described in Chapter 5.3.3.2. Relational
databases with their table structure, split data connected to one episode into different tables,
and therefore contain lots of data from different episodes in the same tables. So to query data
from a certain episode, PyCRORM might have to use multiple joins and iterate through lots of
tables that also contain data not needed for the query. A query on NEEMs, on the other hand,
only needs to access the documents connected to the episode, ignoring the rest of the database.
This might lead to faster retrieval times for this kind of query. However, machine learning is
usually done on lots of data, making queries on single episodes rather rare.

To conclude this section, NEEMs generally do not offer superior scalability, even though they
use a NoSQL approach. In terms of performance a general advantage of one system over the
other can not be concluded. Looking at data retrieval performance, some types of queries might
favor NEEMs, some might favor PyCRORM.

5.3.3 Maintainability

Though scalability and reliability are crucial in data-intensive systems, maintainability is also
critical. Of what use is a system, if it can not be understood by new engineers and it can’t be
changed without further complications, and adapt to future tasks and requirements? Especially
when working in a team-based environment, it is important to keep maintenance cost as low as
possible by still providing a system that fullfills all the requirements and is easily adaptable to
changes in other departments.

Therefore, a well-maintained system should contain the following characteristics: 1. operable,
2. simple and 3. evolvable [Kle17].

5.3.3.1 Operability

Operability describes the capability of keeping a system smooth and running without having to
put too many people and too much effort and therefore, time into the task. Keeping the system
healthy and up to date is critical.

As for PyCRORM, operability is provided rather easily. Since its only purpose is to map
PyCRAM ’s environment into a database, keeping the system up to date can be easily done.

5.3 Evaluating data-intensive applications 43

As long as PyCRAM ’s internal structure doesn’t change, and it remains object-oriented, Py-
CRORM is flexible and reliable enough to handle changes and keep up operability without any
support. It is currently maintained by a single person, and does not need advanced attention.
Error handling, as described in 5.3.1 is informative and straightforward and the code base is well
documented, also providing good visibility into the runtime behavior. It is well documented and
achieves a test coverage of more than 90%, and therefore aligns with modern software practices
[MD14].

Since NEEMs are used, and have interfaces in multiple different systems primarily throughout
the EASE software ecosystem, it is much harder to operate, also due to its comparably much
larger codebase. Though the PyCRAM interface is not large and thus not hard to maintain and
to keep up to date, operating the internal structure with the NEEM Background, the NEEM
Narrative and the NEEM Experience and ensuring that changes of internal functionality within
NEEMs also work in the case of PyCRAM is much harder. The NEEMs project follows a
much larger goal and is not fitted primarily for PyCRAMs purposes, leading to complicated
operability.

5.3.3.2 Simplicity

A system is considered simple if the code is expressive, there are no tangled dependencies, and
terminology is consistent. Good documentation can also help with simplicity. Of course, smaller
projects are usually more simple by default [Kle17].

This means that PyCRORM is much simpler to use by default, due to its size. NEEMs come
with much-advanced mechanisms and details, making them preferable in some applications with
certain requirements like storage of sensor information, but it makes them much more complex
than PyCRORM.

Also, PyCRORM was designed to be user-friendly. To be able to use it, the user does not
have to know much about the internal structure and does not even need knowledge about the
querying language, as is shown in Chapter 5.1 and Chapter 5.2. To use NEEMs, the user needs
advanced knowledge about the system and also needs to fulfill a whole checklist, as described
in Chapter 7 of [Bee+20].

Figure 5.2 Example of data stored in a NEEM’s _triples document

44 Evaluation

When looking at the database and the simplicity of the data itself, PyCRORM is
much easier to understand and use. Like all relational databases, PyCRORM provides
a clear table structure with expressive names in both the table itself and its columns,
which provide an easily understandable data structure. On the other hand, the NEEMs
being a document-oriented database, are not as simple to understand. Every NEEM
consists of four JSON -like documents stored in the database, with its name being its
idea. It is not expressive, and data in these documents is not easily understandable.
For instance, the NEEM with the id 5fc8ff968f880006aa208e19 provides four documents,
their names being 5fc8ff968f880006aa208e19_annotations, 5fc8ff968f880006aa208e19_inferred,
5fc8ff968f880006aa208e19_tf, 5fc8ff968f880006aa208e19_triples. These documents contain data
using JSON syntax. Looking at the 5fc8ff968f880006aa208e19_triples document, when trans-
forming the raw data into a table view, which best compares to PyCRORM structure, the data
is still hard to understand without knowledge about the NEEM’s triples system and ontological
structures. An excerpt of the NEEM’s data stored in the _triples can be seen in Figure 5.2.

from sqlalchemy import select
from pycram.orm.action_designator import GripAction
from pycram.orm.base import ProcessMetaData

def get_gripping_action_orm(session, plan_id):
return session.scalars(select(GripAction).

↪where(ProcessMetaData.id==plan_id)).all()

Figure 5.3 ORM Query which gets all Gripping Actions from a plan

However, since simplicity in the usability of the episodic memory component is a key require-
ment, the internal structure of the data in the database might not be as important, as long as
the access and therefore querying shines in ease of use.

Looking at a query that collects all the gripping actions executed in an episode (in a plan),
it can be observed, that querying PyCRORM is much more intuitive and also takes less code
to compute this query. The ORM query can be seen in Figure 5.3, NEEM query in Figure 5.4.

Simplicity primarily leads to improved usability and accessibility, which represent key re-
quirements for the episodic memory. With PyCRORM being much simpler in multiple regards
as described above, based only on user experience and ease of use, PyCRORM outweighs the
NEEMs by a lot.

5.3.3.3 Evolvability

System requirements and purposes may change over time. Therefore, a system needs to be able
to evolve to its changing requirements.

In the case of PyCRORM, it can easily adapt to any future requirements as long PyCRAM ’s
general object-oriented approach persists. Due to the inheritance pattern and the automatical
mapping via setting an attribute of the class leads to the capability of easily adding new des-
ignator or other objects without the need to change the overall structure. As for the NEEMs,

5.3 Evaluating data-intensive applications 45

def get_gripping_action_neem(neem_id) -> List[Dict]:
return [{"$match": {"p": "http://www.ontologydesignpatterns.

↪org/ont/dul/DUL.owl#executesTask"}},
{

"$lookup":
{

"from": f"{neem_id}_triples",
"localField": "o",
"foreignField": "s",
"as": f"{neem_id}"

}
},
{"$match": {f'{neem_id}.p': 'http://www.w3.org/1999/02/

↪22-rdf-syntax-ns#type',
f'{neem_id}.o': 'http://www.ease-crc.org/

↪ont/SOMA.owl#Gripping'}},
{"$unwind": f"${neem_id}"},
{

"$project": {
f"{neem_id}.s": 1,
"_id": 0

}
}]

Figure 5.4 NEEM Query which gets all Gripping Actions from a NEEM [Bas24a]

changes in requirements both in themselves and in PyCRAM may lead to further complications.
If the structure and requirements of the NEEMs change over time, they may not be suitable
for PyCRAM anymore. The fact, that the NEEMs in their database are primarily created
by CRAM which might have other future requirements and goals than PyCRAM, leading to
differences in the NEEMs itself, does not help this case. The other way around, adapting to
new requirements in PyCRAM might not be as big of a problem for the NEEMs but may lead
to necessary changes to the interface, depending on the form of adaption.

Chapter 6

Conclusion

This thesis introduced PyCRORM, an object-relational approach to episodic memory within
the cognitive architecture PyCRAM.

The thesis followed a clear structure, beginning by discussing PyCRAM as a cognitive archi-
tecture, emphasizing the critical role of episodic memory. It identified limitations within the
existing memory component (NEEMs) and outlined PyCRAM ’s requirements for knowledge
acquisition and representation. These insights paved the way for introducing the new relational
approach, PyCRORM.

Subsequently, the implementation of PyCRORM was explained, accompanied by practical
examples to illustrate its functionality. The examples demonstrated its user-friendly nature,
emphasizing the ease of querying in Python without requiring extensive knowledge of SQL.
This aspect addressed a key limitation of NEEMs, which demanded familiarity with NoSQL
syntax and the complex structure of NEEMs.

A comparative analysis between the old memory component and the new approach highlighted
the potential of PyCRORM, offering a clear overview of its advantages over NEEMs within
PyCRAM. This comparison justified PyCRORM ’s adoption as PyCRAM ’s episodic memory
system.

The conclusion of this thesis provided comprehensive answers to the research questions out-
lined in Chapter 1 PyCRORM successfully meets the requirements defined in Chapter 4.2,
presenting a user-friendly and accessible memory system suitable for diverse applications. As
demonstrated in Chapter 5.2, PyCRORM ’s performance extends to learning purposes within
the cognitive architecture, fulfilling the primary motivation for developing a new memory com-
ponent.

As of writing this conclusion, PyCRORM has replaced NEEMs in PyCRAM and is actively
employed in research, serving as its episodic memory system.

6.1 Future Work

Although PyCRORM functions effectively, there are opportunities for further improvements.
PyCRORM captures all relevant episodic information, yet PyCRAM stores additional data
types, such as sensory information and ontologies, in separate systems. Integrating these data
types into PyCRORM ’s relational database is a current task under development, aiming to
centralize information storage.

47

48 Conclusion

Additionally, optimizing the relational database’s table structures presents an opportunity
for future work. Currently, due to PyCRAM ’s learning requirements, the tables do not obey
to ”normal-form” standards, resulting in the tables and data not being minimal. Transforming
these structures to conform with normal-form standards could improve performance, making
this an intriguing area for future research.

In summary, PyCRORM stands as a significant advancement in episodic memory systems
within PyCRAM. While it fulfills current needs, continued development and exploration of fu-
ture work will further expand its capabilities, reinforcing its role in advancing cognitive robotics
research.

Bibliography

[AB14] John R. Anderson and Gordon H. Bower. Human associative memory. Psychology
press, 2014 (cit. on p. 6).

[ACa] SQLAlchemy Authors and Contributors. Engine Configuration — SQLAlchemy 2.0
Documentation. url: https://docs.sqlalchemy.org/en/20/core/engines.html (visited
on 07/10/2024) (cit. on p. 24).

[ACb] SQLAlchemy Authors and Contributors. Features - SQLAlchemy. url: https://www.
sqlalchemy.org/features.html (visited on 07/17/2024) (cit. on p. 15).

[ACc] SQLAlchemy Authors and Contributors. Session Basics — SQLAlchemy 2.0 Doc-
umentation. url: https://docs.sqlalchemy.org/en/20/orm/session_basics.html
(visited on 07/10/2024) (cit. on p. 24).

[ACd] SQLAlchemy Authors and Contributors. State Management — SQLAlchemy 2.0
Documentation. url: https ://docs . sqlalchemy.org/en/20/orm/session_state_
management.html (visited on 07/10/2024) (cit. on p. 24).

[Bas24a] Abdelrhman Bassiouny. neem_to_sql Github repository. 2024. url: https://github.
com/AbdelrhmanBassiouny/neem_to_sql/blob/master/src/mongo_vs_sql_query.
py (cit. on pp. 42, 45).

[Bas24b] Abdelrhman Bassiouny. “Towards Bigdata in Robotics: Machine Learning Pipeline
for Robot NEEMs (Narrative-Enabled Episodic Memories) in an SQL Database”.
2024 (cit. on pp. 2, 6).

[Bee+20] Michael Beetz, Daniel Beßler, Sebastian Koralewski, Mihai Pomarlan, Abhijit Vyas,
Alina Hawkin, Kaviya Dhanabalachandran, and Sascha Jongebloed. “Neem hand-
book”. In: (2020) (cit. on pp. 2, 5, 43).

[BMT10] Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. “CRAM — A Cognitive
Robot Abstract Machine for everyday manipulation in human environments”. In:
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010,
pp. 1012–1017. doi: 10.1109/IROS.2010.5650146 (cit. on pp. 5, 11).

[BK11] Momotaz Begum and Fakhri Karray. “Visual Attention for Robotic Cognition: A
Survey”. In: IEEE Transactions on Autonomous Mental Development 3.1 (2011),
pp. 92–105. doi: 10.1109/TAMD.2010.2096505 (cit. on p. 9).

[CB05] Thomas M. Connolly and Carolyn E. Begg. Database systems: a practical approach to
design, implementation, and management. Pearson Education, 2005 (cit. on p. 14).

[CP84] Stavros S. Cosmadakis and Christos H. Papadimitriou. “Updates of Relational
Views”. In: J. ACM 31.4 (Sept. 1984), pp. 742–760. issn: 0004-5411. doi: 10.1145/
1634.1887. url: https://doi.org/10.1145/1634.1887 (cit. on p. 16).

49

https://docs.sqlalchemy.org/en/20/core/engines.html
https://www.sqlalchemy.org/features.html
https://www.sqlalchemy.org/features.html
https://docs.sqlalchemy.org/en/20/orm/session_basics.html
https://docs.sqlalchemy.org/en/20/orm/session_state_management.html
https://docs.sqlalchemy.org/en/20/orm/session_state_management.html
https://github.com/AbdelrhmanBassiouny/neem_to_sql/blob/master/src/mongo_vs_sql_query.py
https://github.com/AbdelrhmanBassiouny/neem_to_sql/blob/master/src/mongo_vs_sql_query.py
https://github.com/AbdelrhmanBassiouny/neem_to_sql/blob/master/src/mongo_vs_sql_query.py
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1109/TAMD.2010.2096505
https://doi.org/10.1145/1634.1887
https://doi.org/10.1145/1634.1887
https://doi.org/10.1145/1634.1887

50 Bibliography

[Dec19] Jonas Dech. “PyCRAM - Accurate Physics-based Environment for Executing Mobile
Pick and Place Plans”. 2019. url: https://cram-system.org/_media/jonas_dech_
bsc.pdf (cit. on pp. 11, 18).

[Dec] Jonas Dech. Welcome to pycram’s documentation! — pycram documentation. url:
https://pycram.readthedocs.io/en/latest/ (visited on 07/20/2024) (cit. on pp. 1,
10).

[Foo13] Tully Foote. “tf: The transform library”. In: Technologies for Practical Robot Appli-
cations (TePRA), 2013 IEEE International Conference on. Open-Source Software
workshop. Apr. 2013, pp. 1–6. doi: 10.1109/TePRA.2013.6556373 (cit. on p. 18).

[FMM] Tully Foote, Eitan Marder-Eppstein, and Wim Meeussen. ROS TF package home-
page. url: https://wiki.ros.org/tf (visited on 07/04/2024) (cit. on p. 18).

[Gal13] Daniel Gall. “A rule-based implementation of ACT-R using Constraint Handling
Rules”. PhD thesis. Master Thesis, Ulm University, 2013 (cit. on p. 6).

[Jat+12] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain. “A
survey and comparison of relational and non-relational database”. In: International
Journal of Engineering Research & Technology 1.6 (2012), pp. 1–5 (cit. on p. 15).

[Kle17] Martin Kleppmann. Designing Data-Intensive Applications. O’Reilly Media, Inc.,
2017. isbn: 9781491903100 (cit. on pp. 40–43).

[KT20] Iuliia Kotserub and John K. Tsotsos. “40 years of cognitive architectures: core cogni-
tive abilities and practical applications”. In: Artificial Intelligence Review 53 (2020),
pp. 17–94. doi: https://doi.org/10.1007/s10462-018-9646-y (cit. on pp. 1, 5, 8, 10).

[Küm24] Michaela Kümpel. “Actionable Knowledge Graphs-how daily activity applications
can benefit from embodied web knowledge”. PhD thesis. Universität Bremen, 2024
(cit. on p. 9).

[KP17] Douglas Kunda and Hazael Phiri. “A Comparative Study of NoSQL and Relational
Database”. In: Zambia ICT Journal 1.1 (Dec. 2017), pp. 1–4. doi: 10 . 33260 /
zictjournal .v1i1 .8. url: https ://ictjournal . icict .org .zm/index.php/zictjournal/
article/view/8 (cit. on p. 41).

[LLR09] Pat Langley, John E. Laird, and Seth Rogers. “Cognitive architectures: Research
issues and challenges”. In: Cognitive Systems Research 10.2 (2009), pp. 141–160.
issn: 1389-0417. doi: https://doi.org/10.1016/j.cogsys.2006.07.004. url: https:
//www.sciencedirect.com/science/article/pii/S1389041708000557 (cit. on p. 8).

[Leó16] Carlos León. “An architecture of narrative memory”. In: Biologically Inspired Cog-
nitive Architectures 16 (2016), pp. 19–33. issn: 2212-683X. doi: https://doi.org/10.
1016/j.bica.2016.04.002. url: https://www.sciencedirect.com/science/article/pii/
S2212683X16300184 (cit. on p. 10).

[LM13] Yishan Li and Sathiamoorthy Manoharan. “A performance comparison of SQL and
NoSQL databases”. In: 2013 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM). 2013, pp. 15–19. doi: 10 . 1109 /
PACRIM.2013.6625441 (cit. on p. 42).

[LSB14] John Licato, Ron Sun, and Selmer Bringsjord. “Structural representation and rea-
soning in a hybrid cognitive architecture”. In: 2014 International Joint Conference on

https://cram-system.org/_media/jonas_dech_bsc.pdf
https://cram-system.org/_media/jonas_dech_bsc.pdf
https://pycram.readthedocs.io/en/latest/
https://doi.org/10.1109/TePRA.2013.6556373
https://wiki.ros.org/tf
https://doi.org/https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.33260/zictjournal.v1i1.8
https://doi.org/10.33260/zictjournal.v1i1.8
https://ictjournal.icict.org.zm/index.php/zictjournal/article/view/8
https://ictjournal.icict.org.zm/index.php/zictjournal/article/view/8
https://doi.org/https://doi.org/10.1016/j.cogsys.2006.07.004
https://www.sciencedirect.com/science/article/pii/S1389041708000557
https://www.sciencedirect.com/science/article/pii/S1389041708000557
https://doi.org/https://doi.org/10.1016/j.bica.2016.04.002
https://doi.org/https://doi.org/10.1016/j.bica.2016.04.002
https://www.sciencedirect.com/science/article/pii/S2212683X16300184
https://www.sciencedirect.com/science/article/pii/S2212683X16300184
https://doi.org/10.1109/PACRIM.2013.6625441
https://doi.org/10.1109/PACRIM.2013.6625441

51

Neural Networks (IJCNN). 2014, pp. 891–898. doi: 10.1109/IJCNN.2014.6889895
(cit. on p. 9).

[LGL15] Martyn Lloyd-Kelly, Fernand Gobet, and Peter CR Lane. “Piece of Mind: Long-
Term Memory Structure in ACT-R and CHREST.” In: CogSci. 2015 (cit. on p. 6).

[MD14] Robert C. Martin and Jürgen Dubau. Clean Coder: Verhaltensregeln für profes-
sionelle Programmierer. Vol. 1. mitp Verlags GmbH & Co. KG, 2014 (cit. on p. 43).

[MAI14] Mohamed A. Mohamed, Obay G. Altrafi, and Mohammed O. Ismail. “Relational vs.
nosql databases: A survey”. In: International Journal of Computer and Information
Technology 3.03 (2014), pp. 598–601 (cit. on p. 42).

[NPP13] Ameya Nayak, Anil Poriya, and Dikshay Poojary. “Type of NOSQL databases and
its comparison with relational databases”. In: International Journal of Applied In-
formation Systems 5.4 (2013), pp. 16–19 (cit. on p. 2).

[Oli+19] Alberto Olivares-Alarcos, Daniel Beßler, Alaa Khamis, Paulo Goncalves, Maki K.
Habib, Julita Bermejo-Alonso, Marcos Barreto, Mohammed Diab, Jan Rosell, João
Quintas, and et al. “A review and comparison of ontology-based approaches to robot
autonomy”. In: The Knowledge Engineering Review 34 (2019), p. 29. doi: 10.1017/
S0269888919000237 (cit. on p. 9).

[PPJ17] Robert Poljak, Patrizia Poščić, and Danijela Jakšić. “Comparative analysis of the
selected relational database management systems”. In: 2017 40th International Con-
vention on Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO). 2017, pp. 1496–1500. doi: 10.23919/MIPRO.2017.7973658 (cit.
on p. 14).

[RSS12] Mathis Richter, Yulia Sandamirskaya, and Gregor Schöner. “A robotic architecture
for action selection and behavioral organization inspired by human cognition”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012,
pp. 2457–2464. doi: 10.1109/IROS.2012.6386153 (cit. on p. 8).

[RN21] Stuart Russell and Peter Norvig. Artificial Intelligence, Global Edition A Modern
Approach. Pearson Deutschland, 2021, p. 1168. isbn: 9781292401133. url: https :
//elibrary.pearson.de/book/99.150005/9781292401171 (cit. on pp. 1, 8).

[SK11] Christof Strauch and Walter Kriha. “NoSQL databases”. In: Lecture Notes, Stuttgart
Media University 20.24 (2011), p. 79 (cit. on p. 14).

[Su+16] Yun Su, Xiaowei Zhang, Philip Moore, Jing Chen, Xu Ma, and Bin Hu. “Declara-
tive and procedural knowledge modeling methodology for brain cognitive function
analysis”. In: in Science Robotics (2016), p. 50 (cit. on p. 10).

[Tha12] Paul Thagard. “Cognitive architectures”. In: The Cambridge handbook of cognitive
science 3 (2012), pp. 50–70 (cit. on p. 5).

[TH12] Kristinn Thórisson and Helgi Helgasson. “Cognitive Architectures and Autonomy: A
Comparative Review”. In: Journal of Artificial General Intelligence 3.2 (2012), pp. 1–
30. doi: doi:10.2478/v10229-011-0015-3. url: https://doi.org/10.2478/v10229-
011-0015-3 (cit. on p. 10).

[Ver22] David Vernon. “Cognitive Architectures”. In: Cognitive Robotics. The MIT Press,
May 2022. isbn: 9780262369329. doi: 10 . 7551 / mitpress / 13780 . 003 . 0015. url:
https://doi.org/10.7551/mitpress/13780.003.0015 (cit. on pp. 2, 8, 9).

https://doi.org/10.1109/IJCNN.2014.6889895
https://doi.org/10.1017/S0269888919000237
https://doi.org/10.1017/S0269888919000237
https://doi.org/10.23919/MIPRO.2017.7973658
https://doi.org/10.1109/IROS.2012.6386153
https://elibrary.pearson.de/book/99.150005/9781292401171
https://elibrary.pearson.de/book/99.150005/9781292401171
https://doi.org/doi:10.2478/v10229-011-0015-3
https://doi.org/10.2478/v10229-011-0015-3
https://doi.org/10.2478/v10229-011-0015-3
https://doi.org/10.7551/mitpress/13780.003.0015
https://doi.org/10.7551/mitpress/13780.003.0015

	Contents
	Introduction
	Motivation
	Roadmap

	Related Work
	Cognitive Robot Abstract Machine
	Adaptive Control of Thought-Rational

	Preliminaries
	Cognitive Architectures
	Perception
	Action selection and execution
	Reasoning and Decision-making
	Attention
	Memory
	Learning

	PyCRAM
	Designator
	TaskTree

	Databases

	Contribution
	PyCRAM classification
	Functional requirements
	Approach
	ORM-Class Structure
	Mappings
	Querying in the ORM
	Views

	Evaluation
	PyCRORM Usage Demo
	Learning Demo
	Evaluating data-intensive applications
	Reliability
	Scalability
	Maintainability
	Operability
	Simplicity
	Evolvability

	Conclusion
	Future Work

	Bibliography

