Projekt: SUTURO - sudo tidy-up-my-room

ECTS12
ArtBachelorprojekt
SemesterWiSe 2017 & Fortsetzung im SoSe 2018
VortragendeProf. Michael Beetz
ÜbungsleitungDaniel Beßler, Ferenc Balint-Benczedi, Georg Bartels, Gayane Kazhoyan
SpracheDeutsch & Englisch
PlenumFreitag: 10:00 - 12:00, Ort: TAB 2.83, Aufgang E
Projektraum TAB 2.83
Auftaktplenum 20.10.2017

Sprechstunden der Tutoren

  • Daniel Beßler:
  • Ferenc Balint-Benczedi: Dienstag 14:00-15:00
  • Georg Bartels: Dienstag 15:30 - 16:30, Freitag 13:00 - 14:00
  • Gayane Kazhoyan: Freitag 13:00 - 16:00

News

  • Eintägiger Kick-Off Workshop: 20.10. Agenda

Kurzbeschreibung

ASCII

Der Traum von intelligenten Robotern, die dem Menschen Arbeit abnehmen und den Alltag erleichten, ist ein lange gehegter und bisher leider unerfüllter. Grund ist unter anderem, dass moderne Roboterkontrollsysteme nicht die manipulativen Fähigkeiten besitzen, um einfache Tätigkeiten wie Zimmer aufräumen auszuführen. Die Forschung der AG-KI verfolgt den Ansatz, dass Hintergrundwissen über Gegenstände, Aktionen, Bewegungen und Orte der Schlüssel ist, um die Robotersoftware in unterschiedlichen Situtation intelligentere Entscheidungen treffen zu lassen.

Dieses Hintergrundwissen wird für sämtliche Teilmodule der Robotersoftware benötigt. So benötigt die visuelle Wahrnehmung a priori Form- und Farbinformationen, um z.B. eine rote Tasse in der Umgebung zu erkennen. Die Armsteuerung und Bewegungsplannung wiederum basieren auf dem Wissen, dass volle Tassen nur an Henkeln gegriffen werden und waagerecht getragen werden müssen. Aus Sicht der high-level Verhaltenssteuerung ist das Wissen, dass schmutzige Tassen in den Geschirrspüler und saubere in den Schrank gehören, essentiell, um die richtige Entscheidung zu treffen.

Aus dieser Anwendungsbeschreibung ergeben sich unterschiedliche Projektzielrichtungen:

  • Wissensbasierte visuelle Wahrnehmung: Entwicklung und Optimierung von Perzeptions-Algorithmen auf 2D- und 3D-Bilddaten sowie Erkennung und Klassifizierung von Objekten auf Basis von bekannten Objektmerkmalen
  • Wissensbasierte Armsteuerung: Entwicklung und Testen von Regelungssystem zur Armsteuerungen, die eine symbolische und damit stärker generalisierendere Schnittstelle zum Setzen von Sollwerten und Lesen von Zustandsinformationen zur Verfügung stellen
  • Wissensbasierte abstrakte Verhaltenssteuerung: Entwicklung abstrakter Roboterpläne, kontext- und wissensgesteuerten Verhaltensregeln so wie Mechanismen zur Interpretation und reaktiven Verarbeitung von Wahrnehmungsdaten

Empfohlene Lehrveranstaltungen

Dies ist eine kontinuierlich wachsende Liste mit komplementären Lehrveranstaltungen, die wir empfehlen:





Prof. Dr. hc. Michael Beetz PhD
Head of Institute

Contact via
Andrea Cowley
assistant to Prof. Beetz
ai-office@cs.uni-bremen.de

Discover our VRB for innovative and interactive research


Memberships and associations:


Social Media: