Table of Contents
Image Understanding
Dauer | 4 SWS |
---|---|
Art | Seminar |
Semester | SS2016 |
Vortragende | Prof. Michael Beetz, Ferenc Balint-Benczedi, Feroz Ahmed Siddiky, Thiemo Wiedemeyer, Jan-Hendrik Worch |
Sprache | Deutsch, Englisch |
Termine | Mo., 10:00 - 12:00, Ort: TAB 1.58 |
Bemerkungen | Vorlesungsbeginn: 18.04.2016 |
Organizational Issues and Materials can be found at our Stud.IP page
Description
The seminar will deal with the challenges of semantic perception in the context of robotics, presenting various aspects of it. Students will be presented with an overview of the field followed by individual presentations and reports of pre-defined topics.
Literature
Segmentation
Weakly supervised graph based semantic segmentation by learning communities of image-parts http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pourian_Weakly_Supervised_Graph_ICCV_2015_paper.pdf
Decision Making under Uncertain Segmentations http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7139359
Features
KAZE Features + Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla12eccv.pdf http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf
B-SHOT: A Binary Feature Descriptor for Fast and Efficient Keypoint Matching on 3D Point Clouds http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7353630
Rotation and Translation Invariant 3D Descriptor for Surfaces http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353450
Object Detection, Recognition and Tracking
Real-time Pose Detection and Tracking of Hundreds of Objects + SimTrack: A Simulation-based Framework for Scalable Real-time Object Pose Detection and Tracking http://www.karlpauwels.com/downloads/tcsvt_2015/Pauwels_IEEE_TCSVT_2015.pdf http://www.karlpauwels.com/downloads/iros_2015/Pauwels_IROS_2015.pdf
Surface Oriented Traverse for Robust Instance Detection in RGB-D http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353983
RGB-D Object Modelling for Object Recognition and Tracking http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353360
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks http://arxiv.org/abs/1506.01497
Rich feature hierarchies for accurate object detection and semantic segmentation http://arxiv.org/abs/1311.2524
Efficient RGB-D Object Categorization Using cascaded Ensembles of Randomized Decision Trees http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139358
Robust 3D tracking of Unknown Objects http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7139520
Depth-Based Tracking with Physical Constraints for Robot Manipulation http://homes.cs.washington.edu/~tws10/DepthBasedTracking.pdf
Affordances
AfNet: The Affordance Network http://link.springer.com/chapter/10.1007%2F978-3-642-37331-2_39
Affordance detection of Tool parts from Geometric Features http://www.visionmeetscognition.org/fpic2014/Camera_Ready/Paper%2035.pdf
Long-term human affordance maps http://dx.doi.org/10.1109/IROS.2015.7354193
Deep Learning
Visualizing and Understanding Convolutional Networks https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
DeepFace: Closing the Gap to Human-Level Performance in Face Verification https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation http://cs.nyu.edu/~ajain/accv2014/paper.pdf
Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation https://www.robots.ox.ac.uk/~vgg/rg/papers/tompson2014.pdf
Flowing ConvNets for Human Pose Estimation in Videos https://www.robots.ox.ac.uk/~vgg/publications/2015/Pfister15a/pfister15a.pdf
Multimodal deep learning for robust RGB-D object recognition http://arxiv.org/pdf/1507.06821v2.pdf
RGB-D Object Recognition and Pose Estimation Based on Pre-Trained Convolutional Neural Network Features https://www.ais.uni-bonn.de/papers/ICRA_2015_Schwarz_RGB-D-Objects_Transfer-Learning.pdf
Unsupervised Deep Learning
Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition http://yann.lecun.com/exdb/publis/pdf/ranzato-cvpr-07.pdf
Convolution Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf
Sparse Feature Learning for Deep Belief Networks https://papers.nips.cc/paper/3363-sparse-feature-learning-for-deep-belief-networks.pdf
Efficient sparse coding algorithms https://papers.nips.cc/paper/2979-efficient-sparse-coding-algorithms.pdf
Human Detection and Tracking
Automatic initialization for skeleton tracking in optical motion capture http://dx.doi.org/10.1109/ICRA.2015.7139260
Unsupervised robot learning to predict person motion http://dx.doi.org/10.1109/ICRA.2015.7139254
Pose estimation for a partially observable human body from RGB-D cameras http://dx.doi.org/10.1109/IROS.2015.7354068
Real-time full-body human attribute classification in RGB-D using a tessellation boosting approach http://dx.doi.org/10.1109/IROS.2015.7353541
Action Recognition
Learning symbolic representations of actions from human demonstrations http://dx.doi.org/10.1109/ICRA.2015.7139728
Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks Using Time Series Classification http://dx.doi.org/10.1109/ICRA.2015.7140066
Effective 3D action recognition using EigenJoints http://dx.doi.org/10.1016/j.jvcir.2013.03.001
Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition http://dx.doi.org/10.1016/j.jvcir.2013.04.007
Unsupervised Temporal Segmentation of Repetitive Human Actions Based on Kinematic Modeling and Frequency Analysis http://arxiv.org/abs/1512.04115
sEMG-based decoding of detailed human intentions from finger-level hand motions http://dx.doi.org/10.1109/IROS.2015.7353982
Human motion classification and recognition using wholebody contact force http://dx.doi.org/10.1109/IROS.2015.7353979
Context-based intent understanding using an Activation Spreading architecture http://dx.doi.org/10.1109/IROS.2015.7353791
A framework for unsupervised online human reaching motion recognition and early prediction http://dx.doi.org/10.1109/IROS.2015.7353706
Human intention inference and motion modeling using approximate E-M with online learning http://dx.doi.org/10.1109/IROS.2015.7353614
RoboSherlock
These four papers count as one block, i.e. they have to be presented together.
RoboSherlock: Unstructured Information Processing for Robot Perception http://ai.uni-bremen.de/_media/paper/beetz15robosherlock.pdf
RoboSherlock: Unstructured Information Processing Framework for Robotic Perception http://dx.doi.org/10.1007/978-3-319-26327-4_8
Pervasive 'Calm' Perception for Autonomous Robotic Agents http://ai.uni-bremen.de/_media/paper/Wiedemeyer15pervasive.pdf
Perception for Everyday Human Robot Interaction http://dx.doi.org/10.1007/s13218-015-0400-1
Prof. Dr. hc. Michael Beetz PhD
Head of Institute
Contact via
Andrea Cowley
assistant to Prof. Beetz
ai-office@cs.uni-bremen.de
Discover our VRB for innovative and interactive research
Memberships and associations: